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Watch-n-Patch: Unsupervised Learning of
Actions and Relations

Chenxia Wu, Jiemi Zhang, Ozan Sener, Bart Selman, Silvio Savarese, and Ashutosh Saxena

Abstract—There is a large variation in the activities that humans perform in their everyday lives. We consider modeling these
composite human activities which comprises multiple basic level actions in a completely unsupervised setting. Our model learns
high-level co-occurrence and temporal relations between the actions. We consider the video as a sequence of short-term action clips,
which contains human-words and object-words. An activity is about a set of action-topics and object-topics indicating which actions are
present and which objects are interacting with. We then propose a new probabilistic model relating the words and the topics. It allows
us to model long-range action relations that commonly exist in the composite activities, which is challenging in previous works.
We apply our model to the unsupervised action segmentation and clustering, and to a novel application that detects forgotten actions,
which we call action patching. For evaluation, we contribute a new challenging RGB-D activity video dataset recorded by the new
Kinect v2, which contains several human daily activities as compositions of multiple actions interacting with different objects. Moreover,
we develop a robotic system that watches and reminds people using our action patching algorithm. Our robotic setup can be easily
deployed on any assistive robots.

Index Terms—Unsupervised Learning, Activity Discovery, Robot Application.
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1 INTRODUCTION
The average adult forgets three key facts, chores or events every
day [2]. Hence it is important for a vision system to be able to
detect not only what a human is currently doing but also what he
forgot to do. For example in Fig. 1, someone fetches milk from
the fridge, pours the milk to the cup, takes the cup and leaves
without putting back the milk, then the milk would go bad. In this
paper, we focus on modeling these composite human activities
then detecting the forgotten actions for a robot, which learns from
a completely unlabeled set of RGB-D videos.

A human activity is composite, i.e., it is composed of
several basic level actions. For example, a composite activity
warming milk contains a sequence of actions: fetch-milk-from-
fridge, microwave-milk, put-milk-back-to-fridge, fetch-milk-from-
microwave, and leave. Modeling this poses several challenges.
First, some actions often co-occur in a composite activity but
some may not. Second, co-occurring actions have variations in
temporal orderings, e.g., people can first put-milk-back-to-fridge
then microwave-milk instead of the inverse order in the above
example, as its ordering is more relevant to the action fetch-milk-
from-fridge. Moreover, these ordering relations could exist in both
short-range and long-range, e.g., pour is followed by drink while
sometimes fetch-book is related to put-back-book with a long read
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Fig. 1: Our Watch-Bot understands what human is currently doing
by automatically segmenting the composite activity into basic level
actions. We propose a completely unsupervised approach to modeling
the human skeleton and object features to the actions, as well as
the pairwise action co-occurrence and temporal relations. Using the
learned model, our robot detects humans’ forgotten actions and
reminds them by pointing out the related object using the laser spot.

between them. Third, the objects the human interacting with are
also important to modeling the actions and their relations, as same
actions often have common objects in interaction.

The challenge that we undertake in this paper is: Can an al-
gorithm learn about the aforementioned relations in the composite
activities when just given a completely unlabeled set of RGB-D



0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2679054, IEEE
Transactions on Pattern Analysis and Machine Intelligence

2

videos?
Most previous works focus on action detection in a supervised

learning setting. In the training, they are given fully labeled actions
in videos [33], [45], [46], or weakly supervised action labels [9],
[13], or locations of human/their interacting objects [30], [39],
[53]. Among them, the temporal structure of actions is often
discovered by Markov models such as Hidden Markov Model
(HMM) [52] and semi-Markov [17], [48], or by linear dynamical
systems [5], or by hierarchical grammars [4], [29], [42], [56], [58],
or by other spatio-temporal representations [23], [25], [28], [40].
Object-in-use contextual information has also been commonly
used for recognizing actions [27], [28], [39], [58]. Besides relying
on the manually labeling, most of these works are based on RGB
features and only model the short-range relations between actions
(see Section 2 for details).

Unlike these approaches, we consider a completely unsu-
pervised setting. The novelty of our approach is the ability to
model the long-range action relations in the temporal sequence, by
considering pairwise action co-occurrence and temporal relations,
e.g., put-milk-back-to-fridge often co-occurs with and temporally
after (but not necessarily follows) fetch-milk-from-fridge. We also
use the more informative human skeleton features and RGB-D
object features, which have shown higher performance over RGB
only features for action recognition [27], [32], [64].

In order to capture the rich structure in the composite ac-
tivity, we draw strong parallels with the work done on docu-
ment modeling from natural language (e.g., [8]) and propose a
causal topic model. We consider an activity video as a document,
which consists of a sequence of short-term action clips contain-
ing human-skeleton-trajectories as human-words and interacting-
object-trajectories as object-words. An activity is about a set of
action-topics indicating which actions are present in the video,
such as fetch-milk-from-fridge in the warming milk activity, and a
set of object-topics indicating which object types are interacting.
We draw human-words from the action-topics, and object-words
from both action-topics and object-topics1. Then we model the
following (see Fig. 2):

• Action co-occurrence. Some actions often co-occur in the
same activity and may have the same objects. We model
the co-occurrence by adding correlated topic priors to the
occurrence of action-topics and object-topics, e.g., action-
topics fetch-book and put-back-book has strong correlations
and are also strongly correlated to object-topic book.

• Action temporal relations. Some actions often causally follow
each other, and actions change over time during the activity
execution. We model the relative time distributions between
every action-topic pair to capture the temporal relations.

We first show that our model is able to learn meaningful
representations from the unlabeled composite activity videos. We
use the model to temporally segment videos to action segments
by assigning action-topics. We show that these action-topics are
promising to be semantically meaningful by mapping them to
ground-truth action classes and evaluating the labeling perfor-
mance.

We then show that our model can be used to detect forgotten
actions in the composite activity, a new application that we call
action patching. We enable a robot, which we call Watch-Bot,

1. Here we consider the same object type like book can be variant in
appearance in different actions such as close book in the fetch-book action
and open book in the reading action.

to detect humans’ forgotten actions as well as to localize the
related object in the scene. The setup of the robot can be easily
deployed on any assistive robots and applied to different areas
such as industry, medical work and home use. We evaluate the
action patching accuracy to show that the learned co-occurrence
and temporal relations are very helpful to inferring the forgotten
actions. We also show that our Watch-Bot is able to remind
humans of forgotten actions in the real-world robotic experiments.

We also provide a new challenging RGB-D activity video
dataset 2 recorded by the new Kinect v2 (see examples in Fig. 12),
in which the human skeletons are also recorded. It contains 458

videos of human daily activities as compositions of multiple
actions interacting with different objects, in which people forget
actions in 222 videos. They are performed by different subjects in
different environments with complex backgrounds.

In summary, the main contributions of this work are:
• Our model is completely unsupervised thus being more useful

and scalable.
• Our model considers both the short-range and the long-

range action relations, showing the effectiveness in the action
segmentation and clustering.

• We show a new application by enabling a robot to remind
humans of forgotten actions in the real scenes.

• We provide a new challenging RGB-D activity dataset
recorded by the new Kinect v2, which contains videos of
multiple actions interacting with different objects.

The paper is organized as follows. Section 2 introduces the
related works. Section 3 outlines our approach to modeling the
composite activity. We present the visual features of the activity
video clip in Section 4. Section 5 gives the detailed description
of our learning model as well as its learning and inference.
Section 6 discusses the novelties of our approach compared with
the close works. Section 7 introduces our watch-bot system to
reminding of forgotten actions using our learned model. We give
an extensive evaluation and discussion in the experiments in
Section 8. Section 9 concludes the paper.

2 RELATED WORK

Temporal Structure Modeling in Action Recognition. Our work
is related to the works on action recognition in computer vision.
There is a large number of early works focusing on classifying
pre-segmented action segments into an action class, which can
be referred in surveys [3]. In order to model the complex human
activities, most recent works introduce how to model the temporal
structures in action videos.

Most previous works on action recognition are supervised [9],
[13], [30], [33], [36], [40], [45], [53]. Among them, the most
popular are linear-chain models such as hidden markov model
(HMM) [52], semi-Markov [17], [48] and the linear dynamic
system [5]. They focus on modeling the local transitions (between
frames, temporal segment, or sub-actions) in the activities. More
complex hierarchical relations [29], [42], [56], [58] or graph
relations [4], [49] are considered in modeling actions in the
complex activity. In detail, Lillo et al. [31] describe human
activities in a hierarchical discriminative model that operates at
three semantic levels, which is able to capture the spatio-temporal
compositions for complex activity recognition using RBG-D data.
In the model, action and pose transitions between neighboring

2. The dataset and tools are released at http://watchnpatch.cs.cornell.edu.
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pairs are considered to model the temporal relations. Wei et
al. [60] propose a 4D human-object interaction model and evaluate
on a multiview RGBD event dataset. They represent the structure
of events, sub-events and objects in a hierarchical graph, where
the atomic event transition and object coherence in temporal is
modeled.

There are also some works focusing on detecting local action
patches, primitives, trajectories or spatio-temporal features [20],
[35], [37], [67] without considering the high-level action relations.
There also exist some unsupervised approaches on action recog-
nition. Yang et al. [67] develop a meaningful representation by
discovering local motion primitives in an unsupervised way, then a
HMM is learned over these primitives. Jones et al. [21] propose an
unsupervised dual assignment clustering on the dataset recorded
from two views. In [41], they present a framework for parsing
video events with stochastic temporal and-or graph using unsu-
pervised learning. They represent the temporal relations between
multiple subevents by the horizontal links between the nodes.
In [14], [54], they introduce a novel probabilistic activity modeling
approach that mines recurrent sequential patterns called motifs
from documents. They represent the documents as a mixture of
sequential activity patterns where the mixing weights are defined
by the motif starting time occurrences.

Although these approaches have performed well in different
areas, most of them rely on local relations between adjacent clips
or actions that ignore the long-term action relations. We model
the pairwise action co-occurrence and temporal relations in the
whole video, thus relations are considered globally and completely
with the uncertainty. We also use the learned relations to infer the
forgotten actions without any manual annotations.

RGB-D and Human Skeleton Features. We also use human
skeletons and RGB-D features to better represent video clips rather
than the RGB action features [22], [57]. Action recognition using
human skeletons and RGB-D camera have shown the advantages
over RGB videos in many works. Skeleton-based approach fo-
cus on proposing good skeletal representations [32], [46], [51],
[55], [64]. Furthermore, we detect the human interactive objects
in an unsupervised way to provide more discriminate features.
Object-in-use contextual information has been commonly used
for recognizing actions [27], [28], [39], [58]. Moreover, Huet
al. [18] propose a joint learning model to simultaneously learn
heterogenous features from RGB-D activity videos. Most of them
focus on designing or learning good action features. They lost the
high-level action relations which are captured in our model.

Bayesian Models. Our work is also related to the Bayesian
models. LDA [8] was the first hierarchical Bayesian topic model
and widely used in different applications. The correlated topic
models [6], [24] add the priors over topics to capture topic
correlations. A topic model over absolute timestamps of words is
proposed in [59] and has been applied to action recognition [15].
However, the independence assumption of different topics would
lead to non smooth temporal segmentations. Recently, a multi-
feature max-margin hierarchical Bayesian model [65] is proposed
to jointly learn a high-level representation by combining a hierar-
chical generative model and discriminative maxmargin classifiers
in a unified Bayesian framework. Differently, our model considers
both correlations and the relative time distributions between topics
rather than the absolute time, which captures richer information of
action structures in the complex human activity.

Perception of Human Activities for Robotics. Our work is

Fig. 2: Video representation. (1) A video frames (f
i

) is first decom-
posed into a sequence of overlapping fixed-length temporal clips.
(2) The human-skeleton-trajectories/interactive-object-trajectories are
extracted from each clip, and we cluster them to form the human-
dictionary/object-dictionary. (3) Then the video is represented as a
sequence of human-word and object-word indices by mapping its
human-skeleton-trajectories/interactive-object-trajectories to the near-
est human-words/object-words in the dictionary. (4) An activity video
is about a set of action-topics/object-topics indicating which actions
are present and which types of objects are interacting with. (5)
We learn the mapping of action-words/object-words to the action-
topics/object-topics, as well as the co-occurrence and the temporal
relations between the topics. (6) We assign the topics to clips using
the learned model.

also related to the works on recognizing human actions for
robotics [10], [26], [34]. Yang et al. [66] present a system that
learns manipulation action plans for robot from unconstrained
youtube videos. Hu et al. [19] propose an activity recognition
system trained from soft labeled data for the assistant robot.
Chrungoo et al. [11] introduce a human-like stylized gestures
for better human-robot interaction. Piyathilaka et al. [43] use
3D skeleton features and trained dynamic bayesian networks for
domestic service robots. Our robot’s output laser spot on object is
also related to the work ‘a clickable world’ [38], which selects the
appropriate behavior to execute for an assistive object-fetching
robot using the 3D location of the click by the laser pointer.
However, it is challenging to directly use these approaches to
detecting the forgotten actions and remind people.

3 OVERVIEW

We present our approach pipeline in this section. Our system
takes a RGB-D video with the 3D joints of the tracked human
skeletons from Kinect v2 as inputs. First, a video is decomposed
into a sequence of overlapping fixed-length (20 frames in our
experiments) temporal clips (step (1)). Next the human-skeleton-
trajectory features and the interacting-object-trajectory features
are extracted from the clips (see details in Section. 4).
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We propose a compact representation of the action video
(see Fig. 2) by drawing parallels to document modeling in the
natural language [8]. A video is represented as a sequence of ac-
tion/object words. We use k-means to cluster the human-skeleton-
trajectories/interacting-object-trajectories from all the clips in the
training set to form a human-dictionary and an object-dictionary,
where we use the cluster centers as human-words and object-
words ((2) in Fig. 2). Then, the video is represented as a sequence
of human-word and object-word indices by mapping its human-
skeleton-trajectories/interacting-object-trajectories to the nearest
human-words/object-words in the dictionary ((3) in Fig. 2). An
activity video is also about a set of action-topics indicating
which actions are present in the video, and a set of object-topics
indicating which object types are interacting in the actions ((4) in
Fig. 2).

We propose an unsupervised probabilistic learning model that
models the mapping of action-words/object-words to the action-
topics/object-topics, as well as the co-occurrence and the temporal
relations between the topics ((5) in Fig. 2). Using the learned
model, we can assign the action-topic/object-topic to each clip. So
the continuous clips with the same assigned action-topic form an
action segment ((6) in Fig. 2).

Note that the unsupervised action assignments of the clips
are challenging because there is no annotation during the training
stage. Besides extracting rich visual features, we further consider
the relations among actions and objects. Unlike previous works,
our model captures long-range relations between actions e.g., put-
milk-back-to-fridge is strongly related to fetch-milk-from-fridge
even with pour and drink between them. We model all pairwise
co-occurrence and temporal casual relations between topics in a
video, using a new probabilistic model (introduced in Section 5).

4 VISUAL FEATURES

We describe how we extract the visual features of a clip in this
section. We extract both human-skeleton-trajectory features and
the interacting-object-trajectory features from the output by the
Kinect v2 [1], which has an improved body tracker and the higher
resolution of RGB-D frame than the Kinect v1. The tracked human
skeleton has 25 joints in total. Let X

u

= {x(1)

u

, x
(2)

u

, · · · , x(25)

u

}
be the 3D coordinates of 25 joints of a skeleton in the current
frame u. We first compute the cosine of the angles between the
connected body parts in each frame: ↵(pq)

= (p(p) ·p(q))/(|p(p)| ·
|p(q)|), where the vector p(p) = x(i) � x(j) represents the body
part. The transition between the joint coordinates and angles in dif-
ferent frames can well capture the human body movements. So we
extract the motion features and off-set features [64] by computing
their Euclidean distances D(, ) to previous frame fm

u,u�1

, f↵

u,u�1

and the first frame fm

u,1

, f↵

u,1

in the clip:

fm

u,u�1

= {D(x(i)

u

, x
(i)

u�1

)}25
i=1

, f↵

u,u�1

= {D(↵(pq)

u

,↵
(pq)

u�1

)}
pq

;

fm

u,1

= {D(x(i)

u

, x
(i)

1

)}25
i=1

, f↵

u,1

= {D(↵(pq)

u

,↵
(pq)

1

)}
pq

.

Then we concatenate all fm

u,u�1

, f↵

u,u�1

, fm

u,1

, f↵

u,1

as the human
features of the clip.

We also extract the human interacting-object-trajectory based
on the human hands, image segmentation, motion detection and
tracking. To detect the interacting objects, first we segment each
frame into super-pixels using a fast edge detection approach [12]
on both RGB and depth images. The RGB-D edge detection
provides richer candidate super-pixels rather than pixels to further
extract objects. We then apply the moving foreground mask [50]

Fig. 3: Examples of the human skeletons (red line) and the extracted
interacting objects (green mask, left: fridge, right: book).

to remove the unnecessary steady backgrounds and select those
super-pixels within a distance to the human hands in both 3D
points and 2D pixels. Finally, we collect the bounding boxes
enclosing these super-pixels as the potential interested objects (see
examples in Fig. 3).

We then track the bounding box in the segmented clip using
SIFT matching and RANSAC to get the trajectories. We use the
closest trajectory to the human hands for the clip. Finally, we
extract six kernel descriptors [44] from the bounding box of each
frame in the trajectory: gradient, color, local binary pattern, depth
gradient, spin, surface normals, and KPCA/self-similarity, which
have been proven to be useful features for RGB-D data [61]. We
concatenate the object features of each frame as the interacting-
object-trajectory feature of the clip.

5 LEARNING MODEL

In order to incorporate the aforementioned properties of activities,
we present a new generative model (see the graphic model in Fig. 4
and the notations in Table 1). We use a joint distribution to model
the correlations between action/object topics, that estimates which
actions and objects are most likely to co-occur in a video. We
model a relative time distribution to capture the temporal causal
relations between actions, which estimates the possible temporal
ordering of the occurring actions in the video. The novelty of our
model is the ability to capture both short-range and long-range
relations between actions in the compose activity videos in an
unsupervised way. Using these relations, we can simultaneously
segment the video and assign the action-topics as well as infer
forgotten actions.

Consider a collection of D videos (documents in the topic
model). Each video as a document d consists of N

d

continuous
clips {c

nd

}Nd

n=1

, each of which consists of a human-word wh

nd

mapped to the human-dictionary and an object-word wo

nd

mapped
to the object-dictionary. We assign action-topic to each clip c

nd

from K latent action-topics, indicating which action-topic they
belong to. We assign object-topic to each object-word wo

nd

from
P latent object-topics, indicating which object-topic is interacting
within the clip. The assignments are denoted as z

(1)

nd

and z
(2)

nd

.
We use superscripts (1), (2) to denote action-topics and object-
topics respectively. After assignments, continuous clips with the
same action-topic compose an action segment in a video. All the
segments assigned with the same action-topic from the training set
compose an action cluster.

The topic model such as LDA [8] has been very common
for document modeling from language. We use a it to generate
a video document using a mixture of topics. In order to model
human actions in the video, our model introduces co-occurrence
and temporal structure of topics instead of the topic independence
assumption in LDA.
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Fig. 4: The graphic model of our causal topic model.

Basic generative process. In a document d, we choose
z
(1)

dn

⇠ Mult(⇡
(1)

:d

), z
(2)

dn

⇠ Mult(⇡
(2)

:d

), where Mult(⇡) is a
multinomial distribution with parameter ⇡. The human-word wh

nd

is drawn from an action-topic specific multinomial distribution
�
(1)

z

(1)
nd

, wh

dn

⇠ Mult(�
(1)

z

(1)
dn

), where �
(1)

k

⇠ Dir(�(1)

) is the
human-word distribution of action-topic k, sampled from a Dirich-
let prior with the hyperparameter �(1). While the object-word wo

nd

is drawn from an action-topic and object-topic specific multi-
nomial distribution �

(12)

z

(1)
nd

z

(2)
nd

, wo

dn

⇠ Mult(�
(12)

z

(1)
nd

z

(2)
nd

), where

�
(12)

kp

⇠ Dir(�(12)

) is the object-word distribution of action-
topic k and object-topic p. Here we consider the same object type
like book can be variant in appearance in different actions such as
a close book in fetch-book and a open book in read action. So we
consider the object-word distribution for different combinations of
the action topic and the object topic.

Topic correlations. The co-occurrence such as action pour
and action drink, object book and action read, is useful to recog-
nizing the co-occurring actions/objects and also gives a strong evi-
dence for detecting forgotten actions. We model the co-occurrence
by drawing their priors from a mixture distribution. Let ⇡(1)

kd

,⇡
(2)

pd

be the probability of action-topic k and object-topic p occurring
in document d, where

P
K

k=1

⇡
(1)

kd

= 1,
P

P

p=1

⇡
(2)

pd

= 1. Instead
of sampling it from a fix Dirichlet prior with parameter in LDA
that models them independently, we construct the probabilities by
a stick-breaking process as follows. The stick-breaking notion has
been widely used for constructing random weights [24], [47].

⇡
(1)

kd

=  (v
(1)

kd

)

k�1Y

l=1

 (�v
(1)

ld

),  (v
(1)

kd

) =

1

1 + exp(�v
(1)

kd

)

,

⇡
(2)

pd

=  (v
(2)

pd

)

p�1Y

l=1

 (�v
(2)

ld

),  (v
(2)

pd

) =

1

1 + exp(�v
(2)

pd

)

,

where 0 <  (v
(1)

kd

), (v
(2)

pd

) < 1 is a classic logistic func-

TABLE 1: Notations in our model.

Symbols Meaning
D number of videos in the training database;
K number of action-topics;
P number of object-topics;
N

d

number of human-words/object-words in a video;
c
nd

n-th clip in d-th video;
wh

nd

n-th human-word in d-th video;
wo

nd

n-th object-word in d-th video;
z
(1)
nd

action-topic assignment of c
nd

;
z
(2)
nd

object-topic assignment of wo

nd

;
t
nd

normalized timestamp of of c
nd

;
t
mnd

= t
md

� t
nd

the relative time between c
md

and c
nd

;
⇡
(1)
:d ,⇡

(2)
:d the probabilities of action/object-topics in d-th document;

v
(1)
:d , v

(2)
:d the priors of ⇡(1)

:d ,⇡
(2)
:d in d-th document;

�
(1)
k

multinomial human-word distribution from action-topic k;
�
(12)
kp

multinomial object-word distribution from
action-topic k and object-topic p;

µ,⌃ multivariate normal distribution of v:d = [v
(1)
:d , v

(2)
:d ];

✓
kl

relative time distribution of t
mnd

, between action-topic k, l;

Fig. 5: The relative time distributions learned by our model on training
set (the blue dashed line) and the ground-truth histogram of the
relative time over the whole dataset (the green solid line).

tion, which satisfies  (�v
(1)

kd

) = 1 �  (v
(1)

kd

), (�v
(2)

pd

) =

1� (v(2)
pd

), and v
(1)

kd

, v
(2)

pd

serves as the prior of ⇡(1)

kd

,⇡
(2)

pd

.
In order to capture the correlations between action-topics and

object-topics, we draw the packed vector v
:d

= [v
(1)

:d

, v
(2)

:d

] in
the stick-breaking notion from a mutivariate normal distribu-
tion N(µ,⌃). In practice, we use a truncated vector v

(1)

:d

=

[v
(1)

1d

, · · · , v(1)
K�1,d

] for (K-1) topics, and set ⇡
(1)

Kd

= 1 �
P

K�1

k=1

⇡
(1)

kd

=

Q
K�1

k=1

 (�v
(1)

kd

) as the probability of the final
topic for a valid distribution. The same for v(2)

:d

.
Relative time distributions. The temporal relations between

actions are also useful to discriminating the actions using temporal
ordering and inferring the forgotten actions using the temporal
context. We model the relative time of occurring actions by taking
their time stamps into account. We consider that the relative time
between two words are drawn from a certain distribution according
to their topic assignments. In detail, let t

nd

, t
md

2 (0, 1) be
the absolute time stamp of n-th word and m-th word, which is
normalized by the video length. t

mnd

= t
md

� t
nd

is the relative
time of m-th clip relative to n-th clip. Then t

mnd

is drawn from a
certain distribution, t

mnd

⇠ ⌦(✓
z

(1)
md

,z

(1)
nd

), where ✓
z

(1)
md

,z

(1)
nd

are the
parameters. ⌦(✓

k,l

) are K2 pairwise action-topic specific relative
time distributions defined as follows:

⌦(t|✓
k,l

) =

(
b
k,l

·N(t|µ+

k,l

,⌃+

k,l

) if t � 0,

1� b
k,l

·N(t|µ�
k,l

,⌃�
k,l

) if t < 0,
(1)

An illustration of the learned relative time distributions are
shown in Fig. 5. We can see that the distributions we learned
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correctly reflect the order of the actions, e.g., put-back-to-fridge
is after pour and can be before/after microwave, and the shape
is almost similar to the real distributions. Here the Bernoulli
distribution b

k,l

/1 � b
k,l

gives the probability of action k af-
ter/before the action l. And two independent normal distributions
N(t|✓+

k,l

)/N(t|✓�
k,l

) estimate how long the action k is after/before
the action l3. Then the order and the length of the actions will be
captured by all these pairwise relative time distributions.

5.1 Learning and Inference
Gibbs sampling is commonly used as a means of statistical
inference to approximate the distributions of variables when direct
sampling is difficult [7], [24]. Given a video, the word wh

nd

, wo

nd

and the relative time t
mnd

are observed. We can integrate out
�

(1)

k

,�
(12)

kp

since Dir(�(1)

), Dir(�(12)

) are conjugate priors for
the multinomial distributions �(1)

k

,�
(12)

kp

. We also estimate the
standard distributions including the mutivariate normal distribu-
tion N(µ,⌃) and the time distribution ⌦(✓

kl

) using the method
of moments, once per iteration of Gibbs sampling. As in many
applications using the topic model, we use the fixed symmetric
Dirichlet distributions by setting �(1),�(12) as 0.01.

Then we introduce how we sample the topic assignment
z
(1)

nd

, z
(2)

nd

. We do a collapsed sampling as in LDA by calculating
the posterior distribution of z(1)

nd

, z
(2)

nd

:
p(z

(1)

nd

= k|⇡(1)

:d

, z
(1)

�nd

, z
(2)

nd

, t
nd

)

/

topic prior

z}|{
⇡
(1)

kd

topic-word distribution

z }| {
!(k, wh

nd

)!(k, z
(2)

nd

, wo

nd

)

relative time distributionz }| {
p(t

nd

|z(1)
:d

, ✓) ,

p(z
(2)
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= p|⇡(2)

:d

, z
(2)

�nd

, z
(1)

nd

)

/

topic prior

z}|{
⇡
(2)

pd

topic-word distribution

z }| {
!(z

(1)

nd

, p, wo

nd

) ,

!(k, wh

nd

) =

N�nd

kw

h

+ �(1)

N�nd

k

+N
w

h�(1)

,

!(k, p, wo

nd

) =

N�nd

kpw

o

+ �(12)

N�nd

kp

+N
w

o�(12)

,

p(t
nd

|z(1)
:d

, ✓) =
N

dY

m

⌦(t
mnd

|✓
z

(1)
md

,k

)⌦(t
nmd

|✓
k,z

(1)
md

), (2)

where N
w

h , N
w

o is the number of unique word types in dic-
tionary, N�nd

kw

h

/N�nd

kpw

o

denotes the number of instances of word
wh

nd

/wo

nd

assigned with action-topic k/action-topic k and object-
topic p, excluding n-th word in d-th document, and N�nd

k

/N�nd

kp

denotes the number of total words assigned with action-topic
k/action-topic k and object-topic p. z

(1)

�nd

/z
(2)

�nd

denotes the
topic assignments for all words except z

(1)

nd

/z
(2)

nd

. The detailed
derivation of Eq. (2) is in the Appendix A.

Intuitions. In Eq. (2), note that the topic assignments are
decided by topic priors, word-topic distributions and relative
time distributions. The topic priors are sampled by the topic
co-occurrence distributions, that reflect which actions/objects are
more likely to co-occur in a video. The word-topic distributions

3. Specially, when k = l, If two words are in the same segments, we draw t
from a normal distribution which is centered on zero, and the variance models
the length of the action. If not, it also follows Eq. (1) indicating the relative
time between two same actions. We also use functions tan(�⇡/2 + ⇡t)(0 <
t < 1), tan(⇡/2 + ⇡t)(�1 < t < 0) to feed t to the normal distribution so
that the probability is valid, that sums to one through the domain of t.

reflect the visual appearance of the video clips in different actions.
The relative time distributions reflect the ordering and the time
gaps between actions.

Due to the logistic stick-breaking transformation, the poste-
rior distribution of the topic priors v

:d

= [v
(1)

:d

, v
(2)

:d

] does not
have a closed form. So we instead use a Metropolis-Hastings
independence sampler [16]. Let the proposals q(v⇤

:d

|v
:d

, µ,⌃) =
N(v⇤

:d

|µ,⌃) be drawn from the prior. The proposal is accepted
with probability min(A(v⇤

:d

, v
:d

), 1), where

A(v⇤
:d

, v
:d

)

=

p(v⇤
:d

|µ,⌃)
Q

N

d
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p(z
(1)
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|v(1)⇤
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)p(z
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nd
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)q(v
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|v⇤
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p(v
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|µ,⌃)
Q
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p(z
(1)
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)p(z
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:d

)q(v⇤
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=
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n=1

p(z
(1)
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:d

)p(z
(2)
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)

p(z
(1)
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|v(1)
:d

)p(z
(2)
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:d

)

=
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k=1

(

⇡
(1)⇤
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⇡
(1)
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)

P
N

d

n=1 �(z

(1)
nd

,k)

PY

p=1

(

⇡
(2)⇤
pd

⇡
(2)

pd

)

P
N

d

n=1 �(z

(2)
nd

,p),

which can be easily calculated by counting the number of words
assigned with each topic by z(1)

nd

, z
(2)

nd

. Here the function �(x, y) =
1 if only if x = y, otherwise equal to 0.

For inference of a test video, we sample the unknown topic
assignments z

(1)

nd

, z
(2)

nd

and the topic priors v
(1)

:d

, v
(2)

:d

using the
learned parameters in the training stage.

5.2 Fast sampler

Using Eq.2, the time complexity of the sampling per iteration
would be O(N2

d

DK), which is because p(t
nd

|z(1)
:d

, ✓) needs to
multiply N

d

terms for each word and each topic in each document.
In this sub-section, we present a fast computation of p(t

nd

|z(1)
:d

, ✓)
using the recursive formula, which makes its computation cost
constant time, so that the total sampling time complexity reduces
to O(N

d

DK).
First, we simplify the notation of p(t

nd

|z(1)
:d

, ✓) by merging
the exponential terms:

p(t
n

) = p(t
nd

|z(1)
:d

, ✓) =
Y

m 6=n

�
m

· e
P

m6=n

�

m

(t
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�µ

m

)

2

= �(n)e⇥(n),

where :

�(n) =
Y

m 6=n

�
m

, ⇥(n) =
X

m 6=n

�
m

(t
mn

� µ
m

)

2.

where �
m

, µ
m

denotes the merged parameters of the time distri-
butions in Eq.(1) according to action-word m,n’s action-topics.
If we can derive a recursive formula of �(n),⇥(n), we can fast
compute p(t

n

) using p(t
n�1

) in a constant time. The recursive
formula of �(n) is straightforward:

�(n) =
�
n�1

�
n

�(n� 1).

For ⇥(n), we have:

⇥(n)�⇥(n� 1)

=�
n�1

(t
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� µ
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2 � �
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X

m 6=n,n�1

�
m

((t
mn
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Fig. 6: Examples of composite activity videos. Our model is able to
consider complex action relations using pairwise action co-occurrence
and temporal modeling.

where:
X

m 6=n,n�1

�
m

((t
mn

� µ
m

)

2 � (t
m,n�1

� µ
m

)

2

)

=� 2�t
X

m 6=n,n�1

�
m

t
m,n

��t2
X

m 6=n,n�1

�
m

+ 2�t
X

m 6=n,n�1

�
m

µ
m

.

Since t
m,n�1

� t
m,n

= �t is the time gap between neig-
bouring action-words, which is fixed in our model. It is not hard
to derive the recursive formulas of the three terms in the above
equation:

�(n) =
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=
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µ
n

,
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=
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�
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t
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t
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According to above equations, we can recursively calculate ⇥(n)
in constant time by recursively updating �(n),�µ(n),�t(n).

6 DISCUSSIONS
Note that the novelty of our approach is the ability to model
the long-range action relations in the temporal sequence, by
considering pairwise action co-occurrence and temporal relations,
for example in Fig. 6, put-milk-back-to-fridge often co-occurs
with and temporally after (but not necessarily follows) fetch-milk-
from-fridge. In our topic model, these two action topics would
have strong correlations in topic hyper prior ⌃ and a peak in
negative axle of the relative time distribution ✓.

In previous works on action modeling, temporal relations are
often considered between neighbouring frames [5], [14], [17],
[48], [52], [54] or in hierarchical structures [29], [31], [41], [42],
[56], [58], [60]. However, some obvious long-term relations are
missing in the linear neighbouring modeling and actions do not
necessarily follow a hierarchy in a video e.g., there is no hierarchy
in the examples in Fig. 6, while our pairwise topic co-occurrence
distributions and relative time distributions model is more general
to capture these relations globally and completely. Moreover, we
developed a faster sampler using recursive formulas, which keeps
the computation linear to number of words. In our experiments, it
only took 30 sec. to sample one round on iMac 2.9GHz Core I5,
where the dataset has 11 action topics and 129 videos with 148

words in average in each video.

7 WATCH-BOT TO REMINDING OF FORGOTTEN
ACTIONS
The average adult forgets three key facts, chores or events every
day [2]. So it is important for a personal robot to be able to detect
not only what a human is currently doing but also what he forgot
to do. In this section, we describe a new robot system (see Fig. 7)
to detect the forgotten actions and remind people, which we called
action patching, using our learning model.

Note that detecting forgotten action is more challenging than
conventional action recognition, since what to infer is not shown
in the query video. Also, our model does not necessarily know
the semantic class of the actions. Instead it learns action clusters
and relations from the unlabeled action videos and use them to
detect forgotten actions and remind people. Therefore, modeling
rich relations from videos is important to providing evidence
for detecting forgotten actions. Our model models pairwise co-
occurrence and long-range temporal relations of actions/topics. As
a result, rather than only modeling the single action or the local
temporal transitions in the previous works, those actions occurred
with a relatively large time interval, occurred after the forgotten
actions, as well as the interacting objects can also be used to
detect forgotten actions in our model. For example, a put-back-
book might be forgotten as previously seen a fetch-book action
before a long read action, and seen a book and a leave action
indicates he really forgot it.

We enable a robot, that we call Watch-Bot, to detect humans’
forgotten actions as well as localize the related object in the current
scene. The robot consists of a Kinect v2 sensor, a pan/tilt camera
(which we call camera for brevity in this paper) mounted with a
laser pointer, and a laptop (see Fig. 7). This setup can be easily
deployed on any assistive robot. Taking the example in Fig. 1,
if our robot sees a person fetch a milk from the fridge, pour the
milk, and leave without putting the milk back to the fridge. Our
robot would first detect the forgotten action and the related object
(the milk), given the input RGB-D frames and human skeletons
from the Kinect; then map the object from the Kinect’s view to
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(a) Robot System. (b) System Pipeline.

Fig. 7: (a). Our Watch-Bot system. It consists of a Kinect v2 sensor that inputs RGB-D frames of human actions, a laptop that infers the
forgotten action and the related object, a pan/tilt camera that localizes the object, mounted with a fixed laser pointer that points out the object.
(b). The system pipeline. The robot first uses the learned model to infer the forgotten action and the related object based on the Kinect’s input.
Then it maps the view from the Kinect to the pan/tilt camera so that the bounding box of the object is mapped in the camera’s view. Finally,
the camera moves until the laser spot lies in the bounding box of the target object.

the camera’s view; finally pan/tilt the camera till its mounted laser
pointer pointing to the milk.

Our goal is to detect the forgotten action and then point out
the related object in the forgotten action using our learned model
(see Alg. 1). We first use our model to segment the query video
into action segments (step 1,2 in Alg. 1), and then infer the most
possible forgotten action-topic and the related object-topic (step 4
in Alg. 1). Next we retrieve a top forgotten action segment from
the training database, containing the inferred forgotten action-
topic and the object-topic (step 5,6 in Alg. 1). Using the extracted
object in the retrieved segment, we detect the bounding box of the
related forgotten object in the Kinect’s view of the query video
(step 8,9,10 in Alg. 1). After that, we map the bounding box of
the object from the Kinect’s view to the camera’s view. Finally,
the pan/tilt camera moves until its mounted laser pointer points
out the related object in the current scene.

Patched Action and Object Inference. Our model infers
the forgotten action using the probability inference based on the
dependencies between actions and objects. After assigning the
action-topics and object-topics to a query video q, we consider
adding one additional clip ĉ consisting of ˆwh, ˆwo into q in each
action segmentation point t

s

(see Fig 8). Then the probabilities
of the missing action-topics k

m

with object-topics p
m

in each
segmentation point t

s

can be compared following the posterior
distribution in Eq. (2):
p(z
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/ ⇡
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2 T
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, k
m

2 [1 : K]�K
e

, (3)
where T

s

is the set of segmentation points (t
1

, t
2

in Fig. 8)
and K

e

is the set of existing action-topics in the video
(fetch-book, etc. in Fig. 8). Thus [1 : K] � K

e

are the miss-
ing topics in the video (put-down-items, etc. in Fig. 8).
p(t

s

|z(1)
:d

, ✓),!(k
m

, wh

),!(k
m

, p
m

, wo

) can be computed as in
Eq. (2). Here we marginized ˆwh, ˆwo to avoid the effect of a
specific human-word or object-word. Note that, ⇡(1)

kd

,⇡
(2)

pd

gives

Algorithm 1 Forgotten Action and Object Detection.
Input: RGB-D video q with tracked human skeletons.
Output: Claim no action forgotten, or output an action segment
with the forgotten action and a bounding box of the related object
in the current scene.
1. Assign the action-topics to clips and the object-topics to object-
words in q as introduced in Section 5.1.
2. Get the action segments by merging the continuous clips with
the same assigned action-topic.
3. If the assigned action-topics K

e

in q contains all modeled action-
topics [1 : K], claim no action forgotten and return;
4. For each action segmentation point t

s

, not assigned action-topic
k

m

2 [1 : K]�K

e

, and object-topic p

m

2 [1 : P ]:
Compute the probability defined in Eq. 3;

5. Select the top tree possible tuples (k
m

, p

m

, t

s

), and get the
forgotten action segment candidate set Q which contains segments
with topics (k

m

, p

m

);
6. Select the top forgotten action segment p from Q with the
maximum patch score(p);
7. If patch score(p) is smaller than a threshold, claim no action
forgotten and return;
8. Segment the current frame to super-pixels using edge detec-
tion [12] as in Section 3;
9. Select the nearest super-pixels to both extracted object bounding
box in q and p.
10. Merge the adjacent super-pixels and bound the largest one with
a rectangle as the output bounding box.
11. Return the top forgotten action segment and the object bounding
box.

the probability of a missing action-topic with an object-topic
in the video decided by the correlation we learned in the joint
distribution prior, i.e., the close topics have higher probabilities to
occur in this query video. And p(t

s

|z(1)
:d

, ✓) measures the temporal
consistency of adding a new action-topic. And the marginized
word-topic distribution

P
w

h

,w

o

!(k
m

, wh

)!(k
m

, p
m

, wo

) give
the likelihood of the topic learned from training data.

Patched Action and Object Detection. Then we select the
top three tuples (k

m

, p
m

, t
s

) using the above probability. The
action segments of action-topic k

m

containing object-topic p
m

in the training set consist a patched action candidate segment set
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Fig. 8: Illustration of patched action and object inference using
our model. Given a test video, we infer the forgotten action-topic and
object-topic in each segmentation point (t1, t2 as above). Then we
select the top segment from the inferred action-topic’s segment cluster
with the inferred object-topic with the maximum patch score.

Q. We then select the patched action segment from Q with the
maximum patch score(p) = ave(D(f

pm

, f
qf

),D(f
pm

, f
qt

))�
max(D(f

pf

, f
qt

),D(f
pt

, f
qf

)), where D(, ) is the average pair-
wise distances between frames, ave(, ),max(, ) are the average
and max value. In detail, we consider that the front and the tail
of the patched action segment f

pf

, f
pt

should be similar to the
tail of the adjacent segment in q before t

s

and the front of the
adjacent segment in q after t

s

: f
qt

, f
qf

. At the same time, the
middle of the patched action segment f

pm

should be different to
f
qt

, f
qf

, as it is a different action forgotten in the video.4 If the
maximum score is below a threshold or there is no missing topics
(i.e.,K

e

= [1 : K]) in the query video, we claim there is no
forgotten actions. Then we detect the bounding box of the patched
object. We first segment the current frame into super-pixels as in
Section 3, second search the nearest segments using the extracted
object in the test video and the patched action, finally merge the
adjacent segments into one segment and bound the largest segment
with a bounding box.

Real Object Pointing. We now describe how we pan/tilt
the camera to point out the real object in the current scene. We
first compute the transformation homography matrix between the
frame of the Kinect and the frame of the pan/tilt camera using
keypoints matching and RANSAC, which can be done very fast
within 0.1 second. Then we can transform the detected bounding
box from the Kinect’s view to the pan/tilt camera’s view. Since the
position of the laser spot in the pan/tilt camera view is fixed, next
we only need to pan/tilt the camera till the laser spot lies within the
bounding box of the target object. To avoid the coordinating error
caused by distortion and inconsistency of the camera movement,
we use an iterative search plus small step movement instead of
one step movement to localize the object (illustrated in Fig. 7). In
each iteration, the camera pan/tilt a small step towards to the target
object according to the relative position between the laser spot and
the bounding box. Then the homography matrix is recomputed in
the new camera view, so that the bounding box is mapped in the
new view. Until the laser spot is close enough to the center of the
bounding box, the camera stops moving.

4. Here the middle, front, tail frames are 20%-length of segment centering
on the middle frame, starting from the first frame, and ending at the last frame
in the segment respectively.

8 EXPERIMENTS

8.1 Watch-n-Patch Dataset
We collect a new challenging RGB-D activity dataset recorded by
the new Kinect v2 camera. Each video in the dataset contains 2-7
actions interacting with different objects (see examples in Fig. 12).
The new Kinect v2 has high resolution of RGB-D frames (RGB:
1920 ⇥ 1080, depth: 512 ⇥ 424) and improved body tracking of
human skeletons (25 body joints). We record 458 videos with a
total length of about 230 minutes and ask 7 subjects to perform
human daily activities in 8 offices and 5 kitchens with complex
backgrounds. In each environment, the activities are recorded in
different views. It composed of fully annotated 21 types of actions
(10 in the office, 11 in the kitchen) interacting with 23 types of
objects.

In order to get a variation in activities, we ask participants to
finish task with different combinations of actions and ordering.
Some actions occur together often such as fetch-from-fridge and
put-back-to-fridge while some are not always in the same video
such as take-item and read. Some actions are in fix ordering while
some occur in random order. To evaluate the action patching
performance, 222 videos in the dataset has action forgotten and
the forgotten actions are annotated. We give the examples of action
classes in Fig. 12.

8.2 Experimental Setting and Compared Baselines
We evaluate in two environments ‘office’ and ‘kitchen’. In each
environment, we split the data into a train set with most full videos
(office: 87, kitchen 119) and a few forgotten videos (office: 10,
kitchen 10), and a test set with a few full videos (office: 10,
kitchen 20) and most forgotten videos (office: 89, kitchen 113).
In our experiments, we compare seven unsupervised approaches
using two types of visual features and different correlations and
topics modeling. We denote the approach settings as (method
name)-(topic)-(temporal modeling)-(visual features). We compare
seven approaches with action-topic only (A) and using our hu-
man skeleton and RGB-D features (SRGBD) introduced in Sec-
tion 4: Hidden Markov Model (HMM-A-LT-SRGBD), topic model
LDA (TM-A-NT-SRGBD), correlated topic model (CTM-A-NT-
SRGBD), topic model over absolute time (TM-A-AT-SRGBD),
correlated topic model over absolute time (CTM-A-AT-SRGBD),
topic model over relative time (TM-A-RT-SRGBD) and our causal
topic model with only action-topics (CTM-A-RT-SRGBD) [62],
where LT,NT,AT,RT means linear temporal modeling, no temporal
modeling, absolute time modeling and relative time modeling.
We compare three methods with both action-topics and object-
topics (AO): HMM-AO-LT-SRGBD, LDA-AO-NT-SRGBD and
our CTM-AO-NT-SRGBD [63]. We also evaluate HMM and our
model using the popular features for action recognition, dense
trajectories feature (DTF) [57], extracted in RGB videos5, named
as HMM-A-LT-DTF and CTM-A-RT-DTF, CTM-AO-RT-DTF.

In the experiments, we set the number of topics and states of
HMM equal to or more than ground-truth classes. For correlated
topic models, we use the same topic prior in our model. For models
over absolute time, we consider the absolute time of each word
is drawn from a topic-specific normal distribution. For models
over relative time, we use the same relative time distribution as
in our model (Eq. (1)). The clip length of the action-words is

5. We train a codebook with the size of 2000 and encode the extracted DTF
features in each clip as the bag of features using the codebook.
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TABLE 2: Results using the same number of topics as the ground-truth
action classes. (top one is bold)

‘office’ Seg-Acc Seg-AP Frame-Acc PA-Acc PO-Acc
(%) train test train test train test

HMM-A-LT-DTF 15.2 9.4 21.4 20.7 20.2 15.9 23.6 -
HMM-A-LT-SRGB 18.0 14.0 25.9 24.8 24.7 21.3 33.3 -

HMM-AO-LT-SRGB 18.2 19.4 26.2 23.1 25.3 27.3 32.2 20.4
TM-A-NT-SRGB 9.3 9.2 20.9 19.6 20.3 13.0 13.3 -

TM-AO-NT-SRGB 9.8 12.2 22.3 19.6 24.6 18.4 15.7 10.5
CTM-A-NT-SRGB 10.0 5.9 18.1 15.8 20.2 16.4 13.3 -
TM-A-AT-SRGB 8.9 3.7 25.4 19.0 18.6 13.8 12.0 -

CTM-A-AT-SRGB 9.6 6.8 25.3 19.8 19.6 15.5 10.8 -
TM-A-RT-SRGB 30.8 30.9 29.0 30.2 38.1 36.4 39.5 -
CTM-A-RT-DTF 28.2 27.0 28.3 27.4 37.4 34.0 33.7 -

CTM-AO-RT-DTF 28.5 29.1 30.6 29.5 37.9 35.0 36.2 30.5
CTM-A-RT-SRGB 30.6 32.9 33.1 34.6 39.9 38.5 41.5 -

CTM-AO-RT-SRGB 33.2 35.2 33.0 36.0 40.1 41.2 46.2 36.4
‘kitchen’ Seg-Acc Seg-AP Frame-Acc PA-Acc PO-Acc

(%) train test train test train test
HMM-A-LT-DTF 4.9 3.6 18.8 5.6 12.3 9.8 2.3 -

HMM-A-LT-SRGB 20.3 15.2 20.7 13.8 21.0 18.3 7.4 -
HMM-AO-LT-SRGB 23.9 17.2 21.1 18.8 23.5 20.3 12.4 5.3

TM-A-NT-SRGB 7.9 4.7 21.5 14.7 20.9 11.5 9.6 -
TM-AO-NT-SRGB 7.9 6.7 22.6 17.1 24.9 14.4 10.8 5.3
CTM-A-NT-SRGB 10.5 9.2 20.5 14.9 18.9 15.7 6.4 -
TM-A-AT-SRGB 8.0 4.8 21.5 21.6 20.9 14.0 7.4 -

CTM-A-AT-SRGB 9.7 10.0 19.1 22.6 20.1 16.7 10.7 -
TM-A-RT-SRGB 32.3 26.9 23.4 23.0 35.0 31.2 18.3 -
CTM-A-RT-DTF 26.9 23.6 18.4 17.4 33.3 29.9 16.5 -

CTM-AO-RT-DTF 27.2 25.3 19.1 18.6 32.9 30.2 17.6 13.2
CTM-A-RT-SRGB 33.2 29.0 26.4 25.5 37.5 34.0 20.5 -

CTM-AO-RT-SRGB 32.1 30.7 28.5 28.5 39.2 36.9 24.4 20.6

set to 20 frames, densely sampled by step one and the size of
action dictionary is set to 500. For patching, the candidate set
for different approaches consist of the segments with the inferred
missing topics by transition probabilities for HMM, the topic
priors for TM and CTM, and both the topic priors and the time
distributions for TM-AT, TM-RT, CTM-AT and our CTM-RT.

8.3 Evaluation Metrics

Action Segmentation and Cluster Assignment. First we need
to evaluate whether the unsupervised learned action-topics and
states of HMM are semantically meaningful. As there are no
semantics output from the unsupervised learning, typically the
assigned topics are mapped to the ground-truth labels for final
evaluation. We first count the mapped frames between topics and
ground-truth classes and do the mapping as follows. Let k

i

, c
i

be
the assigned topic and ground-truth class of frame i. The count of
a mapping is: m

kc

=

P
i

�(k

i

,k)�(c

i

,c)P
i

�(c

i

,c)

, where
P

i

�(k
i

, k)�(c
i

, c)
is the number of frames assigned with topic k as the ground-truth
class c and normalized by the number of frames as the ground-
truth class c:

P
i

�(c
i

, c). Then we solve the following binary
linear programming to get the best mapping:

max

x

X

k,c

x
kc

m
kc

,

s.t. 8k,
X

c

x
kc

= 1, 8c,
X

k

x
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� 1, x
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2 {0, 1},

where x
kc

= 1 indicates mapping topic k to class c, otherwise
x
kc

= 0. And
P

c

x
kc

= 1 constrain that each topic must be
mapped to exact one class,

P
k

x
kc

� 1 constrain that each class
must be mapped by at least one topic.

Two settings are considered: Per frame: frame-wise accuracy
(Frame-Acc), the ratio of correctly labeled frames. Segmentation:
the segmentation accuracy (Seg-Acc), the ratio of the ground-

Fig. 9: Segmentation Acc/AP varied with the number of topics in the
‘office’ test dataset.

Fig. 10: Forgotten action/object detection accuracy varied with the
number of action-topics in the ‘office’ dataset.

truth segments that are correctly detected6, and the segmentation
average precision (Seg-AP) by sorting all output action segments
using the average probability of their words’ topic assignments.
These three metrics are evaluated by taking the average of each
action class.

Forgotten Action and Object Detection. We evaluate the
patching accuracy (PA-Acc) by the portion of correct patched
video, including correctly output the forgotten action segments
or claiming no forgotten actions. We consider the output action
segments by the algorithm containing over 50% ground-truth
forgotten actions as correctly output the forgotten action segments.
We also measure the patching object detection accuracy (PO-Acc)
by the typical object detection metric, that considers a true positive
if the overlap rate (union/intersection) between the detected and
the ground-truth object bounding box is greater than 40%.

8.4 Results
Table 2 and Fig. 9 show the main results of our experiments. We
first perform evaluation in the training set to see if actions can be
well segmented and clustered in the train set. We then perform
testing in the test set to see if the new video from the test set
can be correctly segmented and the segments can be correctly
assigned to the action cluster. We discuss our results in the light
of the following questions.

Did modeling the long-range relations help? Modeling
the correlations and the temporal relations between actions is
the key concept in this paper. From the results, we can see
that the approaches considering the temporal relations, HMM-
LT, TM-RT, and our CTM-RT, achieve better performance than
other approaches which assume actions are temporal independent.
This shows that understanding temporal structure is critical to

6. a true positive if the overlap (union/intersection) between the detected and
the ground-truth segments is more than a default threshold 40% as in [42].
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Fig. 11: An example of the robotic experiment. The robot detects the human left the food in the microwave, then points to the microwave.

TABLE 3: Robotic experiment results. The higher the better.

Succ-Rate(%) Subj-AccScore(1-5) Subj-HelpScore(1-5)
HMM-AO-LT-SRGB 37.5 2.1 2.3
TM-AO-NT-SRGB 29.2 1.8 2.0

CTM-AO-RT-SRGB 62.5 3.5 3.9

recognizing and patching actions. In detail, the approaches con-
sidering the topic correlations CTM, CTM-AT, and our CTM-
RT outperforms the corresponding non-correlated topic models
TM-NT, TM-AT, and TM-RT. The approaches modeling both the
short-range and the long-range relations, TM-RT and CTM-RT,
outperforms HMM-LT modeling only local relations. Our CTM-
RT, which considers both the action correlation priors and the
temporal relations, gives the best performance.

How successful was our unsupervised approach in learning
meaningful action-topics? From Table 2, we can see that the un-
supervised learned action-topics are promising to be semantically
meaningful though ground-truth semantic labels are not provided
in the training. In addition to the one-to-one correspondence
between topics and semantic action classes, We also plot the
performance curves varied with the topic number in Fig. 9. It
shows that if we set the topics a bit more than ground-truth classes,
the performance increases since a certain action might be divided
into multiple action-topics. But as topics increase, more variations
are also introduced so that performance saturates.

RGB videos vs. RGB-D videos. We also evaluate our model
CTM-RT and HMM-LT using the popular RGB features for action
recognition (CTM-A-RT-DTF, CTM-AO-RT-DTF and HMM-A-
LT-DTF in Table 2) to see if our RGB-D object and human
skeleton features help. Clearly, they outperform the DTF features
as more accurate human motion and object are extracted.

How well did our new application of action patching
performs? In Table 2, the approaches modeling more action
relations mostly give better patching performance. This is due
to the learned co-occurrence and temporal structure strongly help
indicate which actions are forgotten. Our model capturing both the
short-range and long-range action relations shows the best results.

How important is it to consider relations between actions
and objects? It is clear to see that the model which did well
in forgotten action detection also performed well in detecting
forgotten object. Because our model CTM-AO-RT considers richer
relations between the action and the object, it performs better in
both forgotten action and forgotten object detection than those
which models action and object independently as well as CTM-A-
RT which only models the actions.

8.5 Robotic Experiments

In this section, we show how our Watch-Bot reminds people of
the forgotten actions in the real-world scenarios. We test each

two forgotten scenarios in ‘office’ and ‘kitchen’ respectively (put-
back-book, turn-off-monitor, put-milk-back-to-fridge and fetch-
food-from-microwave). We use a subset of the dataset to train
the model in each activity type separately. In each scenario, we
ask 3 subjects to perform the activity twice, in which the subject
choose to forget the above four actions itself or not to forget any.
Therefore, we test 24 trials in total. We evaluate three aspects.
One is objective, the success rate (Succ-Rate): the laser spot
lying within the object as correct. The other two are subjective,
the average Subjective Accuracy Score (Subj-AccScore): we ask
the participant if he thinks the pointed object is correct; and the
average Subjective Helpfulness Score (Subj-HelpScore): we ask
the participant if the output of the robot is helpful. Both of them
are in 1� 5 scale, the higher the better.

Table 3 gives the results of our robotic experiments. We can
see that our robot can achieve over 60% success rate and gives the
best performance. In most cases people think our robot is able to
help them understand what is forgotten. Fig. 11 gives an example
of our experiment, in which our robot observed what a human is
currently doing, realized he forgot to fetch food from microwave
and then correctly pointed out the microwave in the scene.

9 CONCLUSION AND FUTURE WORK
In this paper, we presented an algorithm that models the human
activities in a completely unsupervised setting. We showed that
it is important to modeling the long-range relations between
the actions. To achieve this, we considered the video as a se-
quence of human-words/object-words, and an activity as a set
of action-topics/object-topics. Then we modeled the word-topic
distributions, the topic correlations and the topic relative time
distributions. We then showed the effectiveness of our model
in the unsupervised action segmentation and clustering, as well
as the action patching. Moreover, we showed that our proposed
robot system using the action patching algorithm was able to
effectively remind people of forgotten actions in the real-world
robotic experiments. For evaluation, we also contributed a new
challenging RGB-D activity video dataset.

Though we showed the promising results and the interesting
applications of the purely unsupervised models in the paper, we
can see that the performance is not more than 50 percent on the
large-scale variant data, as we have no knowledge of the semantic
information. In the future, we plan to extend the model to the semi-
supervised approaches that can effectively use a small portion
of the annotated data for better learning, and improve on the
performance in the real-world applications.

APPENDIX
We give the detailed derivation of the posterior distribution of
z
nd

(Eq. (2)) in this section. We begin with the joint dis-
tribution p(wh,wo, t, z(1), z(2)|⇡(1),⇡(2),�(1),�(12), ✓), where
wh,wo, t, z(1), z(2),⇡(1),⇡(2) are all variables of the word
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(a) turn-on-monitor (b) turn-off-monitor (c) walk

(d) play-computer (e) read (f) fetch-book

(g) put-back-book (h) take-item (i) put-down-item

(j) leave-office (k) fetch-from-fridge (l) put-back-to-fridge

(m) prepare-food (n) microwave (o) fetch-from-microwave

(p) pour (q) drink (r) leave-kitchen

(s) move-kettle (t) fill-kettle (u) plug-in-kettle
Fig. 12: Examples of every action class in our dataset. The left is RGB frame and the right is depth frame with human skeleton (yellow).
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topic priors:
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