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Abstract

In this supplementary material, we study the sensitivity of the parameter M and
give details on the computation of sub-gradient of the loss function with respect to
feature weights θc, θs, θt. Cost of the reject option γ is function of the parameter
M and we show that, it is possible to obtain high accuracy over a wide range of M
values.

1 Sensitivity Analysis of M

As we explained in the main paper, we use the following update function to control the reject cost
during training; γ = 0.1 + #epoch−1

M . In order to analyze the sensitivity of our algorithm on M , we
swept the scaling factor (M ) between 0 and 160 in the SVHN→MNIST experiment. We computed
accuracy for each value of M after the adaptation is completed. We display the resulting accuracy vs
M plot in Figure 1.

0 20 40 60 80 100 120 140 160

M : Scaling factor for γ

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y
on

S
V

H
N
→

M
N

IS
T

Figure 1: Effect of reject cost -γ- on the accuracy. Please note that there is large range of M values yielding
high accuracy. Hence, our model is not sensitive to the M parameter.

Figure 1 shows that there is a large range of values for M which results in high accuracy transduction.
Moreover, for very-large values of M , the reject cost γ will almost always be low during the training
preventing transduction algorithm to make any prediction other than reject. Hence, we expect this
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set-up to perform similarly to source only baseline since adaptation is not possible when all labels
are reject. Whereas, for very-small values of M , the reject cost γ will immediately be very-large
and our transduction method will not be able to predict reject at all. Hence, we expect this setup to
perform similarly to no reject baseline. Indeed, we see this asymptotic behavior and the extreme
values of the plot is compatible with numbers in Table 2 of the main paper.

2 Sub-gradients of the loss function for adaptation

We need the explicit form of feature functions to compute the sub-gradients. With a slight abuse of
notation, we define the following functions Φs(·) = φs(φc(·)) and Φt(·) = φt(φc(·)) such that φs,
φt and φc are functions of θs, θt and θc respectively.

Using these terms, we can re-write the loss function from (main paper 3) as;

loss =
∑
i∈[Ns]

[φs(φc(x̂i))
ᵀφt(φc(xi−))− φs(φc(x̂i))ᵀφt(φc(xi+)) + α]+ (1)

The sub-gradients can then further be computed as;
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