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ABSTRACT

Efficient and accurate interactive image segmentation have
significant importance in many multimedia applications. For
mobile touchscreen-based applications, efficiency is more cru-
cial. Moreover, due to small screens of the mobile devices,
error tolerance is also a crucial factor. In this paper, a
method for interactive image segmentation, tailored for mo-
bile touch screen devices, is proposed. As an interaction
methodology, coloring is presented. An automatic stroke-
error correction methodology to correct the inaccurate user
interaction is also proposed. For the efficient computation
of the solution, a novel dynamic and iterative graph-cut so-
lution is formulated. Efficiency and error tolerance of the
proposed method are tested by using various sample images.
Subjective evaluation of the interactive segmentation algo-
rithms for mobile-touch screen is also performed. Indeed,
for the challenging examples, the superior performance of
the proposed method is obtained by the experiments.

Categories and Subject Descriptors

I.4.6 [Image Processing and Computer Vision]: Seg-
mentation; H.5.2 [Information Interfaces and Presen-
tation]: User Interfaces—input devices and strategies, in-

teraction styles

Keywords

Interactive Image Segmentation, Graph Cuts, Mobile De-
vices

1. INTRODUCTION
Extracting the object of interest from the non-trivial back-

ground is a crucial step in many interactive multimedia ap-
plications. Although, fully automatic image segmentation
algorithms have been improved significantly, it is still not
possible to apply an automatic image segmentation algo-
rithm with a guaranteed performance in the general case.
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Therefore, interactive image segmentation algorithms are
becoming more popular.

Robust interactive segmentation algorithms are desirable
in any application domain; however, applications on mobile
touch-screen devices put extra constraints on the algorithm.
Due to the inaccuracy of user inputs on small screens, such
algorithms should be able to tolerate some errors. More-
over, it is also attractive not to include any correction stage
in the algorithm in order to avoid tedious zooming and cor-
rection processes. In this paper, we propose an interactive
image segmentation algorithm satisfying all of the these con-
straints.

Interactive segmentation methods in the literature can be
divided into two main classes, as boundary-based [13, 17]
and region-based methods [19, 18, 3, 5, 14, 15]. Boundary-
based methods require the user to select an approximate
boundary around the object; then, try to find the correct
boundary. Such methods accomplish their goal by either
minimizing an energy function locally via graph search [17]
or minimizing an energy function globally by using graph-
cut and then letting user perform local changes on the result
[13]. Main drawback of such algorithms is their convergence
to a local minimum in highly textured regions due to the
high edge profile.

On the other hand, region-based methods either exploit
region grow/merge like methods or region cut like approaches.
Region grow/merge type of methods starts from the inter-
acted regions and try to enlarge this region by the help of
a measure using color or texture profile. In [18], color his-
togram based similarity measure is used to perform the max-
imal similarity based merging after oversegmentation of an
image. In [5], information theoretical measure is used to
merge pixels. Moreover, in a different approach [15], merg-
ing performance is improved by using an automatic refine-
ment of suspicious boundaries. The main advantage of these
algorithms is their computational efficiency. On the other
hand, the solution, obtained by these methods, could be a
local minimum of the specified energy function; therefore, it
might not be the globally optimum solution.

Graph-cut is a powerful method which is capable of finding
the global minimum of range of energy functions efficiently.
Type of energy functions, which can be minimized globally,
have been analytically obtained in [12]. The algorithm in [3]
is one of the first algorithm that uses trimaps and probabilis-
tic color models to interactively segment any given image.
Due to their efficiency and performance, graph cuts have
been used and improved in the literature. GrabCut [19] is
an iterative version of graph-cut formulation, which works



efficiently by a small amount of interaction. On the other
hand, color models are also improved by using discriminative
clustering of colors [14]. In [2], a method for the estimation
of graph parameters is further proposed.

Isoperimetric graph partitioning [9] is another graph based
segmentation method defined as finding the segment with
minimum isoperimetric constant. Although it was proposed
as an automatic image segmentation algorithm, it has also
been used as an interactive image segmentation algorithm
[8, 10]. In [9], a graph partitioning problem is defined as
finding the partition with the minimum isoperimetric con-
stant. Then the partition having the minimum isoperimetric
constant is obtained via solution of a linear system. On the
other hand, this method requires selection of ground node.
Although it can be selected automatically, supervised selec-
tion of ground nodes results in interactive image segmenta-
tion algorithm [10].

Among the aforementioned algorithms, the proposed method
is mostly related to [3] and [19]. Our main contributions over
these algorithms can be stated as follows: 1) A novel method
to detect and correct the erroneous user interaction; 2) Dy-
namic version of the graph-cut approach that decreases the
computational complexity of the algorithm; 3) User friendly
interaction method, namely coloring-.

2. PROPOSED METHOD
In most of the interactive image segmentation algorithms,

a user first selects the object of interest by drawing strokes
on the object and/or background or drawing a rectangle
around the object; then, the user gives a command to ex-
ecute segmentation. Then, the user might have a chance
to correct possible mistakes. To the best of our knowledge,
only exception to these types of interaction is paint selection
tool [16]. Paint selection tool minimize the energy func-
tion locally and efficiently by using multi-core multi-level
banded graph-cut and shows the result dynamically to the
user. User draw scribbles for both foreground and back-
ground and can zoom-in and zoom-out.

The proposed method is a dynamic process. In the pro-
posed algorithm, when the user selects a color image, the
gray scale version of this image is initially displayed to the
user. Then, the user starts to colourize the object of inter-
est by the finger strokes on the screen. With each stroke,
global segmentation is performed, and the result on the dis-
play is updated in real-time. Main difference between paint
selection tool and proposed method is that our method does
not require any scribbles on the background. In addition
to these, our method finds the globally optimum solution
of an energy minimization problem. On the other hand,
paint selection tool uses an approximate energy minimiza-
tion method. In addition to these, classical mouse-based
interfaces use left click for foreground and right click for
background. However, in touch based interfaces, there is
only finger stroke. Therefore, using only foreground (or only
background) scribbles is crucial for the user-centered inter-
action.

From the correction point of view; in the proposed method,
a user always has a chance to correct foreground classified as
background. However, user might not have a chance to cor-
rect background classified as foreground without restarting
the algorithm from scratch. Therefore, it is better solving
these types of errors before they occur. In our experiments,
we also observed that this type of errors caused by interac-

tion errors. For this purpose, we propose an algorithm to
classify and correct erroneous interactions in Section 2.3.

Figure 1: Block diagram of the overall algorithm.

In order for coloring to be an intuitive gesture, effects of
scribbles should be local. In order to satisfy this locality re-
quirement, with each stroke on the screen, only the results
of neighbouring pixels are updated, although the segmenta-
tion for the whole image is solved globally. Although this
locality increase the time spent to segment a single image,
it increases the quality of the interaction. Moreover, in or-
der to decrease computational complexity, input image is
initially over segmented by using SLIC [1] algorithm. Af-
ter this oversegmentation step, the image is represented as
a graph of superpixels and all the remaining algorithms are
applied to the graph of these superpixels. In Figure 1, com-
plete image segmentation method is summarized as a block
diagram.

2.1 Image Segmentation using Graph-Cut
Although the interaction methodology and the solution

method differs, representation of the energy function of the
proposed algorithm is still based on [3] and [19]. In [19],
an input image is represented as a color vector of the form
z = (z1, ..., zn, ..., zN ). We modify this representation of an
image from pixel-based to superpixel-based. In our frame-
work, zi is the concatenated color vectors of the pixels of
superpixel i. Segmentation of the image is represented as a
binary vector of form α = (α1, ..., αn, ..., αN ) with αi = 1,
if the superpixel i is foreground and vice versa.
As the color model, Gaussian Mixture Model(GMM) is

used; concatenation of mean and variance vectors of each
Gaussian model is stored in a parameter θ. Then, the en-
ergy function, which is in the form of a Gibbs energy [7], is
formulated as

E(α, θ, z,k) = U(α, θ, z,k) + V (α, z)

In this energy function, U(α, θ, z,k) corresponds to a fit
measure of the estimated color models θ to the segmenta-
tion mask α. This term is used as the sum of the fitness
term of each superpixel and fitness term of each superpixel
is represented by the average of fitness terms of its pixels.
Therefore, if zni

represents the color vector of ith pixel of
nth superpixel and ‖zn‖ represents the number of pixels in
the superpixel n,

U(α, θ, z,k) =
∑

n

1

‖zn‖

∑

i∈n

D(αn, θ, zni
, kn)

where D(αn, θ, zni
, kn) represents the fitness of the pixel

color value to its label. Moreover, it is defined as the in-
verse of the conditional-log-likelihood of the color vector zni

as:

D(αn, θ, zni
, kn) = − log p(zni

|αn, kn, θ)

where p is a normal distribution by an estimated mean vector
and covariance matrix.



In order to learn the parameters θ = (µ(α, k), Σ(α, k)),
at each step of the interaction, the interacted superpixels
have been considered as foreground, while all the other su-
perpixels have been considered as background. Then, model
parameters are computed by using Expectation Maximiza-
tion(EM) algorithm iteratively [19]. It should be noted that
user selects the superpixels; therefore, even during the ini-
tialization of the algorithm, there is enough number of pixels
to be used for EM algorithm.

On the other hand, V (α, z) corresponds to the coherency
of the segmented foreground and background. This term is
a typical smoothness term defined via color profile of the
foreground-background edge and defined as

V (α, z) = γ
∑

(m,n)∈C

[αm 6= αn]exp(−βdis(m,n))

where [ψ] is the indicator function, which gives 1, if ψ is true
and 0 otherwise. C represents the set of neighbouring super-
pixels. Moreover, dis(m,n) represents the distance between
superpixel m and n. This distance is taken as the Euclidean
distance between mean color vectors of corresponding super-
pixels. Finally, the normalization constant β is selected as
[3]:

β = (2 < dis(m,n) >)−1

where < . > denotes expectation over the all superpixel
edges in the whole image. As explained in [3], global min-
imum of this energy function can be efficiently obtained
via min-cut/max-flow method. Details on the minimiza-
tion method with the proposed improvements are given in
Section 2.2

2.2 Dynamic and Iterated Graph-Cut
Proposed algorithm is inherently iterative due to the pro-

posed interaction methodology. By each interaction of a
user, energy minimization is updated by the re-estimation
of its parameters. Therefore, even in the case of using the
original graph-cut, the proposed algorithm should work it-
eratively and dynamically. On the other hand, due to the
high computational cost of the algorithm, iteration of the
whole approach at each interaction does not seem possible.
In order to solve this drawback, we use the residual graph
concept [11] with a novel spatial dynamicity improvement.

Stated energy minimization problem can be converted to
the min-cut/max-flow problem on two terminal (source and
sink) graph G(V,E), where V is set of nodes (superpixels)
and E is set of directed edges. Global solution to the energy
minimization problem is equivalent to the minimum cost
cut that separates source and sink nodes in this graph. It is
shown that, finding the minimum cost cut is equivalent to
the determining maximum flow from source to sink. More-
over, solution to the max-flow problem is obtained by aug-
ment paths algorithm [4]. This algorithm can be explained
by using the residual capacities and augmenting paths.

Residual capacity rij of edge (i, j) ∈ E is the maximum
additional flow that can be sent from i to j through edge
(i, j). Initially, residual capacities are set as edge weights.
The augmenting path is the path from source to sink through
unsaturated residual edges. Augmenting paths algorithm [4]
uses the fact that pushing any flow through an augmenting
path does not change the solution. In other words, the solu-
tion (resulting minimum cut) to the original graph G, and
the graph G′ which results from pushing a flow through an

augmenting path is equivalent. Augmenting flow algorithm
[4] finds a valid path on the residual graph from source
to sink and push the maximum possible flow that can go
through active edges of the obtained path. This search and
pushing flow steps are iterated until there exist no valid
path. In other words, when the max-flow is obtained, resid-
ual graph is the graph with no possible augmenting path.
Moreover, saturated edges correspond to the min-cut solu-
tion.

In the proposed method, the structure of the graph does
not change at all, and the edge weights change slightly through-
out the iterations. Therefore, if the residual graph of the
previous iteration is used, computational burden might sig-
nificantly decrease. In [11], a method for this edge update
is developed. If a weight ,wij , of edge (i, j) is changed
to w′

ij , then the solution to the new graph can be deter-
mined by solving the updated residual graph with update
r′ij = rij + w′

ij − wij . This updated graph results in the
same result, since this update corresponds to pushing all
the flows in the previous graph to the new graph. However,
this update might result in negative edge capacities. Hence,
a method to solve negative edges is also developed in [11].

2.2.1 Spatially Dynamic and Iterated Graph-Cut

Iterative solution [11] improves the time efficiency signifi-
cantly but still there exist some room for additional improve-
ment. In our interaction method, user colourize the object
of interest locally; therefore, the solution required to be ob-
tained should also be a local one. However, min-cut/max-
flow solution is determined for the whole graph; therefore,
there must be some redundant processing. A straightfor-
ward solution to this problem is solving the sub-graph in-
cluding the user interaction. However, the performed exper-
iments showed that finding a generic size for this sub-graph
is not possible. Therefore, an adaptive method for finding
an appropriate size of this subgraph is proposed.

Assume that smallest possible sub-graph (bounding box
of interacted superpixels) is selected and graph-cut is run
and the residual graph is obtained. Then, solution for a
subset of connected nodes R having the same segmentation
result can not be changed simultaneously by the external
flow, if the condition in Equations (1a) and (1b) is satisfied.
Simultaneous change corresponds to the flipping the label of
all nodes in region R.

If R is foreground (connected to source)
∑

i∈R

wiS − wiT >
∑

iR,j /∈R

wij (1a)

If R is background (connected to sink)
∑

i∈R

wiT − wiS >
∑

j /∈R,i∈R

wji (1b)

where wiS and wiT denote the terminal weight of node i
with source and sink respectively.

This condition holds since the cost of the changing the
solution (cutting terminal edges) is larger than the cost of
cutting all the non-terminal edges. Solution to the part of
the nodes in R might still change; however, the result of the
whole R can not change. In other words, only some part of
the nodes in region R can flip their labels.



On the other hand, when the sub-graph and region R is
selected, this condition can also be defined in terms of edge
weights between sub-graph and the rest of the global graph.
It should be noted that there is no available path within the
sub-graph, since this conflicts with the augmenting paths
algorithm [4]. Therefore, all the paths which change the so-
lution should go through edges between the sub-graph and
the rest of the global graph. Moreover, if the sum of the
maximum flows through these paths is less than the termi-
nal weights of the nodes, the resultant labelling can not be
changed via enlargement of the sub-graph. Since, cost of
the changing the solution (cutting only the terminal edges)
is larger than cutting all edges between sub-graph and the
rest of the graph.

The condition for the sub-graph case can be represented
as follows, if N is the set of nodes, which are not in the
sub-graph but neighbour to the nodes in the sub-graph, and
∃Path(i, j) indicates the existence of an augmented path
between i and j.

If R is foreground (connected to source)
∑

i∈R

wiS − wiT >
∑

i∈R,j∈N
∃Path(i,j),e∈E∩Path(i,j)

min(we) (2a)

If R is background (connected to sink)
∑

i∈R

wiT − wiS >
∑

i∈R,j∈N
∃Path(j,i),e∈E∩Path(j,i)

min(we) (2b)

Minimum weight in the path is used as flow value, since
it corresponds to the maximum amount of the flow which
can go through the path. It should be noted that, when the
conditions in Equations (2a) and (2b) are satisfied, label of
all the nodes in region R can not change simultaneously.
However, the solution to the part of the nodes in R might
still change.

If R is taken as single super-pixel and all the superpixels
in the selected sub-graph satisfy this condition, the solution
can not change, when sub-graph is enlarged. However, it is
not efficient to check this condition. Indeed, this condition is
too strict to be satisfied. One can relax this condition by us-
ing the fact that when the colored region is large enough, the
solution to the bounding box of the interacted superpixels
gives satisfying results. Therefore, our method need to han-
dle only small sub-graph cases. For the small subgraphs, we
experimentally observed that initial segmentation supplied
by GMM result is reliable. When sub-graph is segmented via
GMM such that if assigned GMM component is foreground,
super-pixel is considered to be foreground and vice versa; the
segmentation supplied by GMM is generally correct. Most
of the error is actually caused by small foreground or back-
ground (a.k.a shrinking bias). Hence, we can safely argue
that if both foreground and background generated by GMM
satisfy Equations (1a) and (1b), selected sub-graph can be
used. When the Equations (1a) and (1b) are satisfied, ter-
minal edge weights are larger than non-terminal ones; there-
fore, there is no shrinking bias. On the other hand, using
Equation (2a) and (2b) is expected to have better perfor-
mance with its greater computational cost. Moreover, in
our experiments, segmentation solution to the sub-graph ob-
tained via both metrics yielded the same result as global seg-

mentation in all test samples. Therefore, we concluded that
both metrics can be used safely, and the computationally
efficient one is preferred in the final algorithm. Hence, the
resulting algorithm first starts with bounding box of user in-
teraction, then enlarges this sub-graph until the condition in
equations (1a) and (1b) is satisfied. In order to use residual
graph idea, weights of the edges between selected sub-graph
and the rest of the graph should be assumed 0. Moreover,
when the graph is enlarged, these edges can be properly up-
dated via the update rule in [11].

Figure 2: Visualization of automatic sub-graph finding.

Consider the case in Figure 2.a, where green nodes rep-
resent the ground-truth foreground and blue nodes repre-
sents the ground-truth background nodes. In Figure 2.a,
the blue rectangle is the bounding box of the interacted su-
perpixels, and this rectangle does not satisfy the condition.
Enlarged version, which satisfies the condition, is computed
via proposed algorithm and shown as red rectangle. The
corresponding solutions are given in Figure 2.b and 2.c, re-
spectively. In Figure 2.b and 2.c, green and blue nodes
represent computed foreground and background nodes re-
spectively. As presented in this figure, although the initial
solution is erroneous, the enlarged rectangle leads to the
correct solution.

2.3 Error Correction
Due to the small screens of the mobile devices, users gen-

erally make stroke errors during interaction and these er-
rors typically occur around the boundary of the object of
interest. In order to solve such interaction errors, we pro-
pose a correction method which is summarized in Algo-
rithm 1. We assume that user starts interaction within the
object. Then, the algorithm accumulates the color statis-
tics of the current region in a single color Gaussian model.
When user moves from current superpixel to a new one, al-
gorithm checks the new superpixel. If new superpixel fits
to the learned model, the algorithm accepts this new su-
perpixel. If not, the algorithm stores the superpixel which
user left the object. Then, new superpixels are stored in
a temporary queue and not inserted to the algorithm. In
the mean time, color model of these new superpixels are
stored in another single color gaussian model. When an-
other superpixel is examined, if this new superpixel fits to
the previously learned color model, superpixels accumulated
in the queue is discarded, and the correct path between



the superpixel which user left and returned back to the ob-
ject is calculated and inserted in to the dynamic graph-cut.
If the user also leaves the next region (multi-color case),
the algorithm calculates the correct path and insert to the
dynamic graph-cut. Leaving the next region means not
fitting to the temporary color model. As a fit measure,
Euclidean distance between color GMM means are used;
i.e. dist(NewOS,ColorModel) = |zNewOS−µColorModel| and
scalar multiple of standard deviation (kσColorModel) is used
as a threshold.

In order to find the correct path between the superpixel
which user left the object and returned to object, a minimum
cost path finding problem is defined and solved. Correct
path is assumed to be the path between these two points
which minimizes the following cost function;

Cost(path) =
∑

u,v∈path

|xu − xv|+ λ|Iu − Iv| (3)

where, u and v are the nodes incident to the same edge in
a path, xi is mean position vector of superpixel i and Ii is
mean RGB vector of superpixel i. Moreover, this minimum
cost path is obtained via Dijkstra’s algorithm [6] over the
superpixel graph. In our experiments, we have fixed the
value of parameter λ = 0.5.

Algorithm 1 User input correction algorithm

1: Initialization: PossibleError ← 0, clear TempQueue

1: InsertNewOversegment(NewOS):
2: if not PossibleError then
3: if dist(NewOS,CurrentMdl) ≤ kσcurrent then
4: insert NewOS to Dynamic-Graph-Cut
5: update CurrentMdl with NewOS
6: else
7: PossibleError ← 1, LeftOS←NewOS
8: PrevMdl ← CurrentMdl
9: end if
10: else
11: if dist(NewOS,PrevMdl) ≤ kσprev then
12: CurrentMdl ← PrevMdl, PossibleError ← 0
13: FindPath(LeftOS,NewOS)
14: insert founded path to Dynamic-Graph-Cut
15: else if dist(NewOS,CurrentMdl) ≤ kσcurrent then
16: insert NewOS to TempQueue
17: update CurrentMdl with NewOS
18: else
19: PossibleError ← 0, FindPath(LeftOS,NewOS)
20: insert founded path to Dynamic-Graph-Cut
21: end if
22: end if

In order to visualize the performance of the error correc-
tion algorithm, we summarize the main error correction sce-
narios in Figure 3a,3b and 3c on a sample image. In Figure
3a,3b and 3c; blue superpixels are the ones accepted as the
correct user interaction, whereas green line is the discarded
user interaction (considered as an interaction error). More-
over, red superpixels are obtained from minimum cost path
finding solution. Therefore, only the blue and red regions
are used for the dynamic and iterated graph-cuts algorithm.
It should be noted that, these lines are not shown to the
user. These markers are drawn to explain the algorithm.

(a) Error - 1 color (b) Error - 2 colors (c) No Error

Figure 3: Visualization of the proposed error correction al-
gorithm

In the final version, only the current segmentation result is
shown to the user.

In Figure 3a, user first left the object boundary acciden-
tally and then returns back to foreground object pixels. The
proposed algorithm discards the erroneous interaction and
finds the correct path. In Figure 3b, the user left the object
accidentally from the yellow coloured region, then comes
back to a white coloured region. Proposed algorithm also
handles this case successfully. In Figure 3c, user lefts the
yellow region (multi-color case) and then continues along
the white region. When the user enters the region with
shadow, algorithm detects the color change and solve path
finding problem. Indeed, the resulting path is also correct.
In other words, in the case of the false error alarm, resulting
minimum path is also expected to be contained in the ob-
ject; therefore, false error alarm has no side effects for the
algorithm.

3. EXPERIMENTAL RESULTS
The proposed algorithm is tested by using an extensive

dataset with various color and texture profiles. Some of the
interactions and their corresponding results are shown in
Figure 4. Proposed method is compared against Intelligent
Scissors [17], Grabcut [19] and isoperimetric segmentation
[9]. The reason for selection of these algorithms is their
interaction methodology. Using interactions, such as right-
click and keyboard press, are not desirable in touch-screen
application interfaces. Moreover, these algorithms are the
ones which do not require such types of interactions. There-
fore, these methods are assumed to be the only natively
applicable ones to touch-screen based scenarios. In [19], a
bounding box drawn around the object of interest is used
as an interaction. In [17], a roughly drawn boundary of the
object is used as an interaction. Moreover, in [9], scribbles
on foreground are used as an interaction.

As it can be observed from the results in Figure 4, in-
telligent scissors algorithm [17] requires many seed points
for robust operation. Even with dense input seed points;
the performance is quite limited, if there exist local texture
around the boundary. For all the test images, the resulting
segmentation neither smooth nor correct. Grabcut [19] algo-
rithm performs well, if the object of interest has a different
colour characteristics than background, as in the case of last
row. Performance of the Grabcut is limited in other cases.
In Figure 4, in the first row, there is a second object in the
rectangle apart from the object to be segmented. The algo-
rithm could not separate objects, since both are contained
in the rectangle. In the second row, color characteristics



Grabcut [19] Intelligent Scissors[17] Isoperimetric [9] Proposed Method

Figure 4: Comparison of the interactive segmentation methods. Columns show interaction and corresponding result for
Grabcut[19], Intelligent Scissors [17] and proposed method respectively.

of the head of the bird is similar to the background; there-
fore, head of the bird is segmented as background. Finally,
in the third row, there is not enough background informa-
tion; therefore, Grabcut fails to segment the object. Isoperi-
metric segmentation [9] algorithm is quite powerful for au-
tomatic segmentation scenario. However, selecting ground
nodes is not a strong prior. Therefore, single stage segmen-
tation with isoperimetric segmentation algorithm does not
yield segments corresponding to the objects, especially in
the case of complex backgrounds. Except the trivial case in
the last row, isoperimetric segmentation algorithm fails for
other test samples. The proposed method has superior per-
formance in all the test examples. In the first and last rows,
the proposed method yields smooth and correct segmenta-
tion results. In the second row, the foot of the bird is not
segmented correctly due to the limitations of touch screen.
However, proposed method still outperforms the others. In
the third row, there is an erroneous additional small head
around the shoulder of the cyclist. This artifact is caused
by the shrinking bias.

3.1 Analysis of Computation Time
Computation time of the proposed method is compared

against the min-cut/max-flow solution [4] and dynamic graph-
cut [11] solution. Two different evaluations are performed.
First, for the segmentation of a single image, computation
time of three different algorithms are calculated for each iter-
ation (each scribble of the user) of the algorithm. Then, plot
of the computation time throughout the whole process is ob-
tained as in Figure 5. Only one segmentation is performed,
and interaction is dumped to a file. Then, this interaction
is fed to all three algorithms. Therefore, in each iteration
same interaction is fed to all algorithms.

Obviously the original min-cut/max-flow algorithm [4] has
the largest computational time, since it is the baseline algo-
rithm for other two. Dynamic graph-cut [11] starts with the
full solution of graph-cut. After the initial iteration, dy-
namic graph-cut only updates the residual solution, hence

it has a better time complexity. Moreover, proposed algo-
rithm initially starts with a quite small sub-graph and it
is much more efficient than other methods. Throughout the
process, computation time of the proposed method increase,
since interacted region and the resulting sub-graph enlarges.
Eventually the sub-graph converges to the full graph and
computation time of the proposed method converges to the
dynamic graph-cut. Since the proposed algorithm enlarges
the sub-graph until Equations (1a) and (1b) are satisfied,
there are points which enlargement and augmenting flow
algorithm performed many times. At those times, the pro-
posed method spend more time compared to dynamic graph-
cut as expected. This situation is observable in Figure 5 at
the 13th iteration. For all other iterations, superior time
performance of the proposed method is visible in this figure.
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Figure 5: Execution times for each iteration

As a second test, a total of 50 segmentation for different
images are performed, and average computation time of each
algorithm is computed. The average computation time per
interaction of these 3 algorithms is tabulated in Table 1. It
is also clear from Table 1, the proposed algorithm yields the
best computational time.

3.2 Analysis of Error Correction
The proposed error correction algorithm corrects errors

before segmentation. Moreover, correction can also be in-
corporated within graph-cut. If hard constraints (terminal



Interaction Hard-Label Graph Cut Soft-Label Graph Cut Proposed Method

Figure 6: Comparison of the proposed error correction method with hard-label graph-cut and soft-label graph-cut. Columns
show interaction and corresponding result for hard-label graph-cut, soft-label graph-cut and proposed method respectively.

Table 1: Average computation times

Boykov&Kolmogrov Kohli&Torr Proposed Method
771 msec 278 msec 201 msec

edges with infinite weight) are replaced with soft constraints
(terminal edges with weights calculated from GMM), graph-
cut framework supposed to handle this interaction errors.
However, these hard labels on the foreground are quite mean-
ingful, and the proposed algorithm tries to utilize these inter-
actions. The performance of the error correction algorithm
is compared to hard labels and soft labels graph-cut. For
the graph-cut with hard labels, interaction is directly fed
to algorithm. For the graph-cut with soft labels, likelihood
of GMM’s are used as terminal weights for all nodes. Non-
terminal weights are same in all methods. The results of
this experiment are shown in Figure 6.

Figure 6 suggests that proposed algorithm has superior
error correction performance. Hard-labeled graph-cut leads
to a solution with extra erroneous regions, since no error
correction is utilized. In soft-label graph-cut case, discard-
ing hard-labels results in much worse segmentation perfor-
mance. In the first and third row, input image has highly
complex color structure and color profile of foreground and
background is also similar to each other. Therefore, using
only likelihood terms failed to properly segment the image.

In the last row, there are two objects in the image and the
user is interested with only one of them. Soft-label graph-
cut fails to distinguish these two objects; since both of the
objects have almost same color profile. Indeed, it also er-
roneously classify part of the background as foreground due
to the color similarity. In the second row, there is no in-
teraction around the head of the bird. Indeed, color of the
head is also available in the background. Moreover, in the
forth row, color of the hand and the ground are similar to
each other. Therefore, founded foregrounds by soft-label
graph-cut are erroneous in both cases. It is surprising that
soft-label graph-cut yields worse performance than no error
correction(hard-label graph cut). This result actually shows
the importance of the hard-labels(infinite terminal weights).
In conclusion, not using definite foreground markers (infinite
terminal weights) fails to properly segment the image.

3.3 Analysis of Interaction Method
For the subjective evaluation of interactive segmentation

algorithms, we have proposed and practiced a subjective
evaluation. We have compared 3 different interaction meth-
ods, namely intelligent scissors [17], grabcut [19] and pro-
posed method. In order to evaluate the algorithms, 4 dif-
ferent evaluation metrics are used namely segmentation per-

formance, entertainment, easiness and overall satisfaction.
First each subject is shown a tutorial about usage of each

algorithm. Then, the user is asked to segment 4 images



randomly chosen from the dataset composed of 10 images
with various difficulty. For each image, the algorithms are
applied in a random order. Then, user is asked to rate each
algorithm for each of 4 metrics. Rating is conducted by
grading at the level of 1-5. The tests were conducted with
a capacitive mobile touch screen. 15 subjects, composed of
undergraduate engineering students, have been participated
in the tests. Median ratings for each algorithm as well as
interquartile ranges (IQR) and standard deviations (STD)
is summarized below. Dependent ANOVA test is applied
to find p-values and p-values are same for each metric and
equal to 0.0005.

Table 2: Interaction Quality Test Results (Me-
dian:IQR:STD), P-values are founded via dependent
ANOVA test and they all are equal to 0.0005

Perf. Easiness Entertain Overall
Proposed Met. 5:1:.45 4:0:.86 5:1:.74 4:1:.45
GrabCut[19] 3:2:.92 4:1:.75 2:1:.61 3:1:.77
Int. Scissor[17] 3:1:.51 2:1:.74 3:2:.89 2:1:.76

The proposed method has the best segmentation perfor-
mance result. This behavior is also visible in Figure 4. More-
over, Grabcut only requires a rectangle around the object so
it is expected to be the easiest one subjectively. However,
the proposed method is thought to be as easy as grabcut.
We believe, this result is due to the intuitive coloring ges-
ture used in the algorithm. Intelligent scissors has the worst
easiness result, since the selection of landmarks and move-
ment around the boundary is quite unattractive. Most of
the subjects actually commented about this unattractive-
ness of intelligent scissors. The proposed method has the
best entertainment result. It is intuitive since coloring is
an entertaining process. On the other hand, Grabcut has
worst entertainment result. This result is surprising, since
comments of the users suggest that intelligent scissors is an
unattractive process. We believe this surprising result is due
to the time spent for the interaction. When the user spends
more time, he/she likes the process more. In addition to
these, the proposed technique has the best overall satisfac-
tion result. With its superior performance and interaction
quality this is also expected.

4. SUMMARY & CONCLUSIONS
We addressed the interactive image segmentation problem

with particular emphasis on mobile touch-screens. A new in-
teractive image segmentation method that utilizes an intu-
itive interaction method coloring is proposed with improve-
ments on interaction error correction. Dynamic and iterated
graph-cuts method is proposed to increase the speed of the
algorithm without compromising on performance. Perfor-
mance of the proposed method is compared against the avail-
able algorithms in the literature. Experiments suggest that
proposed method has superior error robustness and compu-
tational complexity. In addition to these, the performed user
study suggests that algorithms designed for classical mouse
based interfaces results in poor interaction quality and over-
all satisfaction. Therefore, it is necessary to revisit standard
problems in the multimedia literature for their mobile exten-
sions.
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