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Abstract

Supervised learning with large scale labelled datasets and deep layered models has
caused a paradigm shift in diverse areas in learning and recognition. However, this
approach still suffers from generalization issues under the presence of a domain
shift between the training and the test data distribution. Since unsupervised domain
adaptation algorithms directly address this domain shift problem between a labelled
source dataset and an unlabelled target dataset, recent papers [11, 33] have shown
promising results by fine-tuning the networks with domain adaptation loss functions
which try to align the mismatch between the training and testing data distributions.
Nevertheless, these recent deep learning based domain adaptation approaches still
suffer from issues such as high sensitivity to the gradient reversal hyperparameters
[11] and overfitting during the fine-tuning stage. In this paper, we propose a unified
deep learning framework where the representation, cross domain transformation,
and target label inference are all jointly optimized in an end-to-end fashion for
unsupervised domain adaptation. Our experiments show that the proposed method
significantly outperforms state-of-the-art algorithms in both object recognition and
digit classification experiments by a large margin.

1 Introduction

Recently, deep convolutional neural networks [17, 26, 30] have propelled unprecedented advances
in artificial intelligence including object recognition, speech recognition, and image captioning.
Although these networks are very good at learning state of the art feature representations and
recognizing discriminative patterns, one major drawback is that the network requires huge amounts
of labelled training data to fit millions of parameters in the complex network. However, creating such
datasets with complete annotations is not only tedious and error prone, but also extremely costly. In
this regard, the research community has proposed different mechanisms such as semi-supervised
learning [27, 37], transfer learning [23, 31], weakly labelled learning, and domain adaptation. Among
these approaches, domain adaptation is one of the most appealing techniques when a fully annotated
dataset (e.g. ImageNet [7], Sports1M [14]) is already available as a reference.

The goal of unsupervised domain adaptation, in particular, is as follows. Given a fully labeled
source dataset and an unlabeled target dataset, to learn a model which can generalize to the target
domain while taking the domain shift across the datasets into account. The majority of the literature
[13, 29, 9, 28, 32] in unsupervised domain adaptation formulates a learning problem where the task
is to find a transformation matrix to align the labelled source data distribution to the unlabelled target
data distribution. Although these approaches have shown promising results, they show accuracy
degradation because of the discrepancy between the learning procedure and the actual target inference
procedure. In this paper, we aim to address this issue by incorporating the unknown target labels into
the training procedure.
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In this regard, we formulate a unified deep learning framework where the feature representation,
domain transformation, and target labels are all jointly optimized in an end-to-end fashion. The
proposed framework first takes as input a batch of labelled source and unlabelled target examples, and
maps this batch of raw input examples into a deep representation. Then, the framework computes the
loss of the input batch based on a two stage optimization in which it alternates between inferring the
labels of the target examples transductively and optimizing the domain transformation parameters.

Concretely, in the transduction stage, given the fixed domain transform parameter, we jointly infer
all target labels by solving a discrete multi-label energy minimization problem. In the adaptation
stage, given a fixed target label assignment, we seek to find the optimal asymmetric metric between
the source and the target data. The advantage of our method is that we can jointly learn the optimal
feature representation and the optimal domain transformation parameter, which are aware of the
subsequent transductive inference procedure.

Following the standard evaluation protocol in the unsupervised domain adaptation community, we
evaluate our method on the digit classification task using MNIST [19] and SVHN[21] as well as the
object recognition task using the Office [25] dataset, and demonstrate state of the art performance in
comparison to all existing unsupervised domain adaptation methods. Learned models and the source
code can be reached from the project webpage.

2 Related Work

This paper is closely related to two active research areas: (1) Unsupervised domain adaptation, and
(2) Transductive learning.

Unsupervised domain adaptation: [16] casts the zero-shot learning [22] problem as an unsupervised
domain adaptation problem in the dictionary learning and sparse coding framework, assuming access
to additional attribute information. Recently, [3] proposed the active nearest neighbor algorithm,
which combines the component of active learning into the domain adaptation problem and makes
a bounded number of active queries to users. Also, [13, 9, 28] proposed subspace alignment based
approaches to unsupervised domain adaptation where the task is to learn a joint transformation
and projection in which the difference between the source and the target covariance is minimized.
However, these methods learn the transformation matrices on the whole source and target dataset
without utilizing the source labels.

[32] utilizes a local max margin metric learning objective [35] to first assign the target labels with the
nearest neighbor scheme and then learn a distance metric to enforce the negative pairwise distances
to be larger than the positive pairwise distances. However, this method learns a symmetric distance
matrix shared by both the source and the target domains so the method is susceptible to the discrep-
ancies between the source and the target distributions. Recently, [11, 33] proposed a deep learning
based method to learn domain invariant features by providing the reversed gradient signal from the
binary domain classifiers. Although this method performs better than aforementioned approaches,
their accuracy is limited since domain invariance does not necessarily imply discriminative features
in the target domain.

Transductive learning: In the transductive learning [10], the model has access to unlabelled test
samples during training. [24] utilizes a semi-supervised label propagation algorithm into the semi-
supervised transfer learning problem assuming access to few labeled examples and additional human
specified semantic knowledge. [15] tackled a classification problem where predictions are made
jointly across all test examples in a transductive [10] setting. The method essentially enforces the
notion that the true labels vary smoothly with respect to the input data. We extend this notion to
jointly infer the labels of unsupervised target data points in a k-NN graph.

To summarize, our main contribution is to formulate an end-to-end deep learning framework where
we learn the optimal feature representation, infer target labels via discrete energy minimization
(transduction), and learn the transformation (adaptation) between source and target examples all
jointly. Our experiments on digit classification using MNIST [19] and SVHN[21] as well as the
object recognition experiments on Office [25] datasets show state of the art results, outperforming all
existing methods by a substantial margin.

2



3 Method

3.1 Problem Definition and Notation

In the unsupervised domain adaptation, one of the domains (source) is supervised {x̂i, ŷi}i∈[Ns] with
Ns data points x̂i and the corresponding labels ŷi from a discrete set ŷi ∈ Y = {1, . . . , Y }. The
other domain (target), on the other hand is unsupervised and has Nu data points {xi}i∈[Nu].

We further assume that two domains have different distributions x̂i ∼ ps and xi ∼ pt defined on the
same space x̂i,xi ∈ X . We consider a case in which there are two feature functions Φs,Φt : X → Rd
applicable to source and target separately. These feature functions extract the information both shared
among domains and explicit to the individual ones. The way we model common features is by
sharing a subset of parameters between feature functions as Φs = Φθc,θs and Φt = Φθc,θt . We use
deep neural networks to implement these functions. In our implementation, θc corresponds to the
parameters in the first few layers of the networks and θs, θt correspond to the respective final layers.
In general, our model is applicable to any hierarchical and differentiable feature function which can
be expressed as a composite function Φs = fθs(gθc(·)) for both source and target.

3.2 Consistent Structured Transduction

Our method is based on jointly learning the transferable domain specific representations for source
and target as well as estimating the labels of the unsupervised data-points. We denote these two main
components of our method as transduction and adaptation. The transduction is the sub-problem of
labelling unsupervised data points and the adaptation is the sub-problem of solving for the domain
shift. In order to solve this joint problem tractably, we exploit two heuristics: cyclic consistency for
adaptation and structured consistency for transduction.

Cyclic consistency: One desired property of Φs and Φt is consistency. If we estimate the labels of
the unsupervised data points and then use these points with their estimated labels to estimate the
labels of supervised data-points, we want the predicted labels of the supervised data-points to be
consistent with the ground truth labels. Using the inner product as an asymmetric similarity metric
-s(x̂i,xj) = Φs(x̂i)

ᵀΦt(xj)- this consistency can be represented with the following diagram.

(x̂i, ŷi)OO

Cyclic Consistency: ŷi = ŷpredi

Transduction // (xj , yj) Transduction // (x̂i, ŷ
pred
i )

It can be shown that if the transduction from target to source follows a nearest neighbor rule, cyclic
consistency can be enforced without explicitly computing ŷpredi using the large-margin nearest
neighbor (LMNN)[35] rule. For each source point, we enforce a margin such that the similarity
between the source point and the nearest neighbor from the target with the same label is greater than
the similarity between the source point and the nearest neighbor from the target with a different label.
Formally; Φs(x̂i)

ᵀΦt(xi+) > Φs(x̂i)
ᵀΦt(xi−) + α where xi+ is the nearest target having the same

class label as x̂i and xi− is the nearest target having a different class label.

Structured consistency: We enforce a structured consistency when we label the target points during
the transduction. The structure we enforce is; if two target points are similar to each other, they are
more likely to have the same label. To do so, we create a k-NN graph of target points using a similarity
metric Φt(xi)

ᵀΦt(xj). We denote the neighbors of the point x̂i as N (x̂i). We enforce structured
consistency by penalizing neighboring points of different labels proportional to their similarity score.

Our model leads to the following optimization problem, over the target labels yi and the feature
function parameters θc, θs, θt, jointly solving transduction and adaptation.

min
θc,θs,θt,
y1,...yNu

∑
i∈[Ns]

[Φs(x̂i)
ᵀΦt(xi−)− Φs(x̂i)

ᵀΦt(xi+) + α]+︸ ︷︷ ︸
Cyclic Consistency

+λ
∑
i∈[Nu]

∑
xj∈N (xi)

Φt(xi)
ᵀΦt(xj)1(yi 6= yj)

︸ ︷︷ ︸
Structured Consistency

s.t. i+ = arg maxj|yj=ŷiΦs(x̂i)
ᵀΦt(xj) and i− = arg maxj|yj 6=ŷiΦs(x̂i)

ᵀΦt(xj)

(1)
where 1(a) is an indicator function which is 1 if a is true and 0 otherwise. [a]+ is a rectifier function
which is equal to max(0, a).
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We solve this optimization problem via alternating minimization through iterating over solving for
unsupervised labels yi(transduction) and learning the similarity metric θc, θs, θt (adaptation). We
explain these two steps in detail in the following sections.

3.3 Transduction: Labeling Target Domain

In order to label the unsupervised points, we base our model on the k-nearest-neighbor rule. We
simply compute the k-NN supervised data point for each unsupervised data point using the learned
metric and transfer the corresponding majority label. Formally, given a similarity metric θc, θs, θt,
the k-NN rule is (yi)

pred = arg maxy
ky(xi)
k where ky(xi) is the number of samples having label y

in the k nearest neighbors of xi from the source domain. One major issue with this approach is the
inaccuracy of transduction during the initial stage of the algorithm. Since the learned metric will not
be accurate, we expect to see some noisy k-NN sets. Hence, we propose two solutions to solve this
problem.

Structured Consistency: Similar to existing graph transduction algorithms [4, 36], we create a
k-nearest neighbor (k-NN) graph over the unsupervised data points and penalize disagreements of
labels between neighbors.

Reject option: In the initial stage of the algorithm, we let the transduction step use the reject R as
an additional label (besides the class labels) to label the unsupervised target points. In other words,
our transduction algorithm can decide to not label (reject) some of the points so that they will not be
used for adaptation. As the learned metric gets more accurate in the future iterations, transduction
algorithm can change the label from R to other class labels.

Using aforementioned heuristics, we define our transduction sub-problem as1:

min
y1,...yNu∈Y∪R

∑
i∈[Nu]

l(xi, yi) + λ
∑
i∈[Nu]

∑
xj∈N (xi)

Φt(xi)
ᵀΦt(xj)1(yi 6= yj) (2)

where l(xi, y) =

{
1− ky(xi)

k y ∈ Y
γmaxy′∈Y

k′y(xi)

k y = R
and γ is relative cost of the reject option.

The l(xi, R) is smaller if none of the class has a majority, promoting the reject option for undecided
cases. We also modulate the γ during learning to decrease number of reject options in the later stage
of the adaptation. This problem can approximately be solved using many existing methods. We use
the α-β swapping algorithm from [5] since it is experimentally shown to be efficient and accurate.

3.4 Adaptation: Learning the Metric

Given the predicted labels yi for unsupervised data points xi, we can then learn a metric in order
to minimize the loss function defined in (1). Following the cyclic consistency construction, the
LMNN rule can be represented using the triplet loss defined between the supervised source data
points and their nearest positive and negative neighbors among the unsupervised target points. We do
not include the target-data points with reject labels during this construction. Formally, we can define
the adaptation problem given unsupervised labels as;

min
θc,θs,θt

∑
i∈[Ns]

[Φs(x̂i)
ᵀΦt(xi−)− Φs(x̂i)

ᵀΦt(xi+) + α]+ + λ
∑
i∈[Nu]

∑
xj∈N (xi)

Φt(xi)
ᵀΦt(xj)1(yi 6= yj)

(3)
where

i+ = arg maxj|yj=ŷiΦs(x̂i)
ᵀΦt(xj) and i− = arg maxj|yj 6=ŷi,yj 6=RΦs(x̂i)

ᵀΦt(xj) (4)

We optimize this function via stochastic gradient descent using the sub-gradients ∂loss
∂θs

, ∂loss∂θt
and

∂loss
∂θc

. These sub-gradients can be efficiently computed with back-propagation (see [1] for details).

1The subproblem we define here does not directly correspond to optimization of (1) with respect to
y1, . . . yNu . It is extension of the exact sub-problem by replacing 1-NN rule with k-NN rule and introducing
reject option.
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3.5 Implementation Details

We use Alexnet [17] and LeNet [18] architectures with small modifications. We remove their final
softmax layer and change the size of the final fully connected layer according to the desired feature
dimension. We consider the last fully connected layer as domain specific features (θs, θt) and the rest
as common network θc. Common network weights are tied between domains, and the final layers
are learned separately. In order to have a fair comparison with existing algorithms, we follow the
same architecture used by [11] only modifying the final feature dimensionality (embedding size).
Explicitly, we use the following architectures for domains:

MNIST and SVHN: LeNet[18] as;

Office: AlexNet[17] as;

Algorithm 1 Transduction with Domain Shift
Input: Source x̂1···Ns , ŷ1,···Ns , Target x1,··· ,Nu ,
Batch Size 2×B
for t = 0 to max_iter do

Sample {x̂1,...,B , ŷ1,...,B}, {x1,...,B}
Solve (2) for {y1···B}
α← 0
for i = 1 to B do

if ŷi ∈ y1···B and ∃k yk ∈ Y \ ŷi then
Compute (i+, i−) using {y1···B} in (4)
Update ∂loss

∂θc
, ∂loss
∂θs

, ∂loss
∂θt

α← α+ 1
end if

end for
if α > 0 then
η(t)← Adagrad Rule [8]
θc ← θc +η(t) 1

α
∂loss
∂θc

, θs ← θs +η(t) 1
α
∂loss
∂θs

,
θt ← θt + η(t) 1

α
∂loss
∂θt

end if
end for

where C is convolution, P is max-pooling, R is
ReLU and F is fully connected layer.

Since the office dataset is quite small, we do not
learn the network from scratch for office experi-
ments and instead we initialize with the weights
pre-trained on ImageNet. In all of our experi-
ments, we set the feature dimension as 128. We
use stochastic gradient descent to learn the fea-
ture function with AdaGrad[8]. We initialize
convolutional weights with truncated normals
having std-dev 0.1, biases with constant value
0.1, and use a learning rate of 2.5× 10−4 with
batch size 512. We start the rejection penalty
with γ = 0.1 and linearly increase with each
epoch as γ = #epoch−1

M + 0.1. In our experi-
ments, we use M = 20, λ = 0.001 and α = 1.

4 Experimental Results

We evaluate our algorithm on various unsuper-
vised domain adaptation tasks while focusing on two different problems: hand-written digit classifi-
cation and object recognition.

Datasets: We use MNIST [19], Street View House Number [21] and the artificially generated version
of MNIST -MNIST-M- [11] to experiment our algorithm on the digit classification task. MNIST-M is
simply a blend of the digit images of the original MNIST dataset and the color images of BSDS500 [2]
following the method explained in [11]. Since the dataset is not distributed directly by the authors,
we generated the dataset using the same procedure and further confirmed that the performance is
the same as the one reported in [11]. Street View House Numbers is a collection of house numbers
collected from Google street view images. Each of these three domains are quite different from each
other. Among many important differences, the most significant ones are MNIST being grayscale
whilw the others are colored, and SVHN images having extra confusing digits around the centered
digit of interest. Moreover, all domains are large-scale, having at least 60k examples over 10 classes.

In addition, we use the Office [25] dataset to evaluate our algorithm on the object recognition task.
The office dataset includes images of the objects taken from Amazon, captured with a webcam and
captured with a D-SLR. Differences between domains include the white background of Amazon
images versus realistic webcam images, and the resolution differences. The Office dataset has fewer
images, with a maximum of 2478 per domain over 31 classes.

Baselines: We compare our method against a variety of methods with and without feature learning.
SA*[9] is the dominant state-of-the-art approach not employing any feature learning, and Back-
prop(BP)[11] is the dominant state-of-the-art employing feature learning. We use the available source
code of [11] and [9] and following the evaluation procedure in [11], we choose the hyper-parameter
of [9] as the highest performing one among various alternatives. We also compare our method with
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the source only baseline which is a convolutional neural network trained only using the source data.
This classifier is clearly different from our nearest neighbor classifier; however, we experimentally
validated that the CNN always outperformed the nearest neighbor based classifier. Hence, we report
the highest performing source only method.

Evaluation: We evaluate all algorithms in a fully transductive setup [12]. We feed training images
and labels of first domain as the source and training images of the second domain as the target. We
evaluate the accuracy on the target domain as the ratio of correctly labeled images to all target images.

4.1 Results

Following the fully transductive evaluation, we summarize the results in Table 1 and Table 2. Table 1
summarizes the results on the object recognition task using office dataset whereas Table 2 summarizes
the digit classification task on MNIST and SVHN.

Table 1: Accuracy of our method and the state-of-the-art algorithms on Office dataset.

SOURCE AMAZON D-SLR WEBCAM WEBCAM AMAZON D-SLR
TARGET WEBCAM WEBCAM D-SLR AMAZON D-SLR AMAZON

GFK [12] .398 .791 .746 .371 .379 .379
SA* [9] .450 .648 .699 .393 .388 .420

DLID [6] .519 .782 .899 - - -
DDC [33] .618 .950 .985 .522 .644 .521
DAN [20] .685 .960 .990 .531 .670 .540

BACKPROP [11] .730 .964 .992 .536 .728 .544

SOURCE ONLY .642 .961 .978 .452 .668 .476
OUR METHOD (K-NN ONLY) .727 .952 .915 .575 .791 .521
OUR METHOD (NO REJECT) .804 .962 .989 .625 .839 .567

OUR METHOD (FULL) .811 .964 .992 .638 .841 .583

Table 2: Accuracy on the digit classification task.
SOURCE M-M MNIST SVHN MNIST
TARGET MNIST M-M MNIST SVHN

SA* [9] .523 .569 .593 .211
BP [11] .732 .766 .738 .289

SOURCE ONLY .483 .522 .549 .162
OUR METHOD(K-NN ONLY) .805 .795 .713 .158
OUR METHOD(NO REJECT) .835 .855 .774 .323

OUR METHOD(FULL) .839 .867 .788 .403

Tables 1&2 show results on object recogni-
tion and digit classification tasks covering
all adaptation scenarios. Our experiments
show that our proposed method outperforms
all state-of-the-art algorithms. Moreover, the
increase in the accuracy is rather signifi-
cant when there is a large domain difference
such as MNIST↔MNIST-M, MNIST↔SVHN,
Amazon↔Webcam and Amazon↔D-SLR. Our
hypothesis is that the state-of-the-art algorithms
such as [11] are seeking features invariant to the domains whereas we seek an explicit similarity
metric explaining both differences and similarities of domains. In other words, instead of seeking an
invariance, we seek an equivariance.

Table 2 further suggests that our algorithm is the only one which can successfully perform adaptation
from MNIST to SVHN. Clearly the features which are learned from MNIST cannot generalize to
SVHN since the SVHN has concepts like color and occlusion which are not available in MNIST.
Hence, our algorithm learns SVHN specific features by enforcing accurate transduction in the
adaptation.

Another interesting conclusion is the asymmetric results. For example, adapting webcam to Amazon
and adapting Amazon to webcam yield very different accuracies. The similar asymmetry exists in
MNIST and SVHN as well. This observation validates the importance of an asymmetric modeling.

To evaluate the importance of joint labelling and reject option, we compare our method with self
baselines. Our self-baselines are versions of our algorithm not using the reject option (no reject) and
the version using neither reject option nor joint labelling (k-NN only). Results on both experiments
suggest that joint labelling and the reject option are both crucial for successful transduction. Moreover,
the reject option is more important when the domain shift is large (e.g. MNIST→SVHN). This is
expected since transduction under a large shift is more likely to fail a situation that can be prevented
with reject option.
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4.1.1 Qualitative Analysis

Figure 1: Nearest neighbors for
SVHN→MNIST exp. We show an
example MNIST image and its 5-NNs.

Figure 2: Nearest neighbors for
Amazon↔Webcam exp. We show an
example Amazon image and its 3-NNs.

To further study the learned representations and the simi-
larity metric, we performed a series of qualitative analysis
in the form of nearest neighbor and tSNE[34] plots.

Figure 1 visualizes example target images from MNIST
and their corresponding source images. First of all, our
experimental analysis suggests that MNIST and SVHN
are the two domains with the largest difference. Hence, we
believe MNIST↔SVHN is a very challenging set-up and
despite the huge visual differences, our algorithm results
in accurate nearest neighbors. On the other hand, Figure 2
visualizes the example target images from webcam and
their corresponding nearest source images from Amazon.

The difference between invariance and equivariance is
clearer in the tSNE plots of the Office dataset in Figure 3
and the digit classification task in Figure 4. In Figure 3, we
plot the distribution of features before and after adaptation
for source and target while color coding class labels. We
use the learned embeddings as output of Φs and Φt as an
input to tSNE algorithm[34]. As Figure 3 suggests, the
source domain is well clustered according to the object
classes with and without adaptation. This is expected
since the features are specifically fine-tuned to the source
domain before the adaptation starts. However, the target
domain features have no structure before adaptation. This
is also expected since the algorithm did not see any image
from the target domain. After the adaptation, target images
also get clustered according to the object classes.

In Figure 4, we show the digit images of the source and
target after the adaptation. In order to see the effect of com-
mon features and domain specific features separately, we
compute the low-dimensional embeddings of the output
of the shared network (output of the first fully connected
layer). We further compute the NN points between the
source and target using Φs and Φt, and draw an edge be-
tween NNs. Clearly, the target is well clustered according
to the classes and the source is not very well clustered
although it has some structure. Since we learn the en-
tire network for digit classification, our networks learn
discriminative features in the target domain as our loss de-
pends directly on classification scores in the target domain.
Moreover, discriminative features in the target arises be-
cause of the transductive modeling. In comparison, state
of the art domain invariance based algorithms only try to be invariant to the domains without explicit
modeling of discriminative behavior on the target. Hence, our method explicitly models the rela-
tionship between the domains and results in an equivarient model while enforcing discriminative
behavior in the target.

5 Conclusion

We described an end-to-end deep learning framework for jointly optimizing the optimal deep feature
representation, cross domain transformation, and the target label inference for state of the art
unsupervised domain adaptation.

Experimental results on digit classification using MNIST[19] and SVHN[21] as well as on object
recognition using the Office[25] dataset show state of the art performance with a significant margin.
We will make our learned models as well as the source code available immediately upon acceptance.
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(a) S. w/o Adaptation (b) S. with Adaptation (c) T w/o Adaptation (d) T with Adaptation

Figure 3: tSNE plots for office dataset Webcam(S)→Amazon(T). Source features were discriminative and stayed
discriminative as expected. On the other hand, target features became quite discriminative after the adaptation.

Figure 4: tSNE plot for SVHN→MNIST experiment. Please note that the discriminative behavior only emerges
in the unsupervised target instead of the source domain. This explains the motivation behind modeling the
problem as transduction. In other words, our algorithm is designed to be accurate and discriminative in the target
domain which is the domain we are interested in.
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